

STRUCTURAL & EARTHQUAKE ENGINEERING

Structural Evaluation & Condition Assessment

City of Manzanita Elementary School and Quonset Hut Manzanita, Oregon

> October 22, 2018 18111.00

TABLE OF CONTENTS

1.	Project Background	1
2.	Evaluation Criteria and Methodology	1
2.1 2.2 3.	Wind, Snow, and Live Loads Seismic Loads Site Description and Seismicity	1 2 3
4.	Elementary School Evaluation	3
4.1 4.2 4.3 4.4 5 .	Building Description Building Condition Assessment Structural Evaluation and Deficiencies Conceptual Strengthening Scheme Quonset Hut Evaluation	
5.1 5.2 5.3 5.4 6.	Building Description Building Condition Assessment Structural Evaluation and Deficiencies Conceptual Strengthening Scheme Demolition.	
7.	Conceptual Estimate of Probable Construction Costs	15
7.1 7.2 8 .	Remediation Cost Estimate Demolition Cost Estimate Limitations	16 17 17

APPENDICES

Appendix A – Original Construction Drawings

- Appendix B Conceptual Strengthening Scheme
- Appendix C Structural Calculations
- Appendix D Conceptual Estimate of Probable Construction Costs

Appendix E – ASCE 41-17 Structural Checklists

Executive Summary

The Elementary School and Quonset Hut are located in Manzanita, Oregon and are both single-story, wood-framed structures. The Elementary School is approximately 5,478 square feet and the Quonset Hut is approximately 4,160 square feet. An American Society of Civil Engineers (ASCE) 41-17 seismic evaluation and a 2014 Oregon Structural Specialty Code (OSSC) structural evaluation were performed on the two buildings. In addition, a condition assessment was performed. Several structural and nonstructural components were found to be deficient. A conceptual strengthening scheme to address the deficiencies is summarized below.

Elementary School

- Roof framing will be strengthened at select locations of snow drift by adding additional 2x framing members. Rigid insulation and a membrane roof system will be installed over new plywood.
- New shear walls will be added by installing plywood sheathing and infilling openings, where required. Hold-downs and enlarged footings will be added at select shear walls. The concrete masonry unit (CMU) wall at the original hallway will be demolished and rebuilt as a wood shear wall.
- Deteriorated foundation walls along the west side will be repaired with new concrete and dowels.
- Deteriorated wood framing will be replaced. New siding will be added to the west side and wherever new plywood sheathing was installed.
- Corroded anchor bolts and connections to footings will be replaced with postinstalled epoxy anchor bolts.
- The masonry chimney will be demolished to below the roof sheathing. Remaining masonry walls will be strengthened with HSS 4x4 strongbacks.
- Cracked masonry walls will be strengthened with fiber reinforced polymer (FRP).
- Post-installed anchors will be installed at exterior post bases.

<u>Quonset Hut</u>

- Corroded anchor bolts and connections to footings will be replaced with postinstalled epoxy anchor bolts and galvanized angles, where required.
- CMU piers will be demolished and rebuilt as wood-framed piers and braced to the structure.
- New shear walls will be added by installing plywood sheathing.
- Add new plywood to the mezzanine. Increase plywood nailing at the mezzanine walls and add anchor bolts from walls to the foundation.

Both Buildings

• Strengthen the roof diaphragms and the connection of the diaphragms to the new shear walls. Diaphragms will be strengthened by installing new plywood sheathing. The transfer of forces from the roof diaphragm to the shear walls will be strengthened with new blocking, straps, and clips.

In general, the Elementary School is in poor condition and appears to have suffered from many years of deferred maintenance and neglect. The Quonset Hut is in fair condition for a building of its age. There are deferred maintenance items noted, but the Quonset Hut is in far better shape than the Elementary School.

We have prepared a conceptual estimate of probable construction costs for all strengthening schemes. A summary of the strengthening scheme costs is provided in the table below.

Summary of Project Costs by Strengthening Option			
Construction Category	Strenghten Elementary School	Strengthen Quonset Hut	Demolish Both Buildings
Structural Strengthening	\$29,940	\$14,319	-
Condition Assessment	\$646,055	\$116,306	-
Demolition	\$58,889	\$14,036	\$172,310
Margins & Adjustments	\$587,744	\$115,697	\$137,810
Total	\$1,322,628	\$260,358	\$310,120
Total Area	5,478 Sq. Ft.	4,160 Sq. Ft.	9,638 Sq. Ft.
\$/Sq. Ft.	\$241	\$63	\$32

1. Project Background

A structural evaluation and building condition assessment of the Elementary School and the Quonset Hut located in Manzanita, Oregon have been performed to determine the expected structural building performance. The purpose of our structural evaluation is to identify the structural deficiencies that exist at the Elementary School and the Quonset Hut. The structural evaluation and building condition assessment are the basis for the conceptual strengthening schemes to address the identified deficiencies. In addition, the evaluation will be used to develop a cost estimate for the options to either renovate or demolish the structures.

Our work is based on the following:

- 1. A review of available original construction documents for the Elementary School, dated July 10, 1948. No construction drawings were available for the Quonset Hut. Relevant drawings have been included in Appendix A for reference.
- 2. A site visit by Brian Knight, P.E., S.E., of WRK Engineers on September 13, 2018 to verify the structural system shown in the original construction drawings and to assess the as-built conditions of the structural systems.

2. Evaluation Criteria and Methodology

2.1 Wind, Snow, and Live Loads

The structural evaluation was performed to current loading requirements based on the 2014 Oregon Structural Specialty Code (OSSC) for wind, snow, and live loads (as appropriate). Live loads are only evaluated at elevated floor levels, which only occur at the Quonset Hut mezzanine. The live load is dependent on the intended occupancy/usage of the space. Loading criteria for wind, snow, and live loads are provided below. The live loads are for probable mezzanine occupancy usage.

- Snow Load = 25 PSF
- Design Wind Speed = 135 MPH
- Exposure Category = B
- Risk Category = II
- Live Load = 40 PSF (Classroom), 50 PSF (Office), and 125 PSF (Light Storage)

2.2 Seismic Loads

The seismic evaluation was performed using ASCE Standard 41-17, "Seismic Evaluation and Retrofit of Existing Buildings", published by the American Society of Civil Engineers (ASCE). ASCE 41 is the nationally recognized Standard for seismic assessment and strengthening of existing buildings. The goal of ASCE 41 is to identify "weak links" in a building's lateral force resisting system that can lead to significant failure and/or collapse.

The ASCE 41 methodology utilizes a series of checklists to screen for possible seismic deficiencies (i.e. Tier 1 Screening). Checklists are included in the Standard for all of the major structural systems, nonstructural elements, and geological and site hazards. The evaluating engineer addresses each statement and determines whether it is compliant or non-compliant. Compliant statements identify conditions that are acceptable. Non-compliant statements identify conditions that need mitigation or further investigation (i.e. Tier 2 or Tier 3 evaluation).

Our evaluation used an ASCE 41 Tier 1 screening to determine potential deficiencies. We then used the Tier 2 deficiency procedure to further evaluate the identified deficiencies and to determine strengthening measures. The nominal capacity of components is compared with the expected force demands determined by the Tier 2 analysis procedure to determine a demand-capacity ratio (DCR). Structural elements are identified as having adequate strength when the DCR > 1.0.

For each building, a performance objective must be selected. The performance objective consists of a target building performance level and a corresponding seismic hazard level. Common seismic hazard levels and their mean return periods are outlined in Table 1 below. There are two different basic performance objectives: Basic Performance Objective for Existing Buildings (BPOE) and Basic Performance Objective Equivalent to New Building Standards (BPON). The BPOE evaluates based on Basic Safety Earthquake-1E (BSE-1E) or BSE-2E. The BPON evaluates based on either BSE-1N or BSE-2N.

TABLE 1 – Seismic Hazard Levels and Return Period		
Seismic Hazard Level	Probability of Exceedance in 50 Years	Mean Return Period
BSE-1E	50 Percent	225 Years
BSE-2E	5 Percent	975 Years
BSE-1N	10 Percent	475 Years
BSE-2N	2 Percent	2,475 Years

Our evaluation is based on Life Safety (LS) Structural Performance considering the BSE-1N earthquake event with a 10% probability of occurrence in 50 years (475-year) mean recurrence period). In other words, we are evaluating the building for compliance with

a level consistent with the Oregon State Building Code for new Risk Category II Buildings. Please note that our evaluation does not incorporate a reduced hazard level (i.e. using 75% of BSE-1N).

The intent of the LS performance level is:

After a seismic event, the building will experience extensive damage to structural and nonstructural components, but some margin against partial or total structural collapse will remain. The basic vertical and lateral force resisting systems of the building retain some residual strength and stiffness from their pre-earthquake state. The risk of life-threatening injury as a result of structural damage is low, and structural repairs to the damaged structure are advised before re-occupancy.

In other words, the LS performance level objective is meant to ensure that reoccupancy of the building is possible after structural repairs are made. However, repairs may not be economically feasible and may take between six and twelve months to complete.

Please note that ASCE 41-17 does not have a Tier 1 checklist for the LS performance level. The ASCE 41-17 Tier 1 checklist is for the Collapse Prevention (CP) performance level evaluated at the BSE-2N earthquake event. The BSE-2N is a larger earthquake than the BSE-1N. The lower CP performance level evaluated at the larger BSE-2N earthquake ill identify deficiencies that will also be present at the higher LS performance level evaluated at the lower BSE-1N earthquake.

3. Site Description and Seismicity

The buildings are located on a level site with the ground floor at grade.

The seismic soil coefficients used for evaluation are based on the current classifications from the ASCE 7-10 provisions. The site soil classification is assumed to be Class D.

Using maps developed by the United States Geological Survey (USGS), the site-specific parameter for short period spectral acceleration, S_{XS} , is 0.888 g. The spectral response acceleration parameter at a one second period, S_{X1} , is 0.681 g. Amplification factors used to account for the soil conditions at the site are $F_V = 1.500$ and $F_a = 1.000$. Based on ASCE 41-17, Tables 2-4, the buildings are located in an area of high seismicity.

4. Elementary School Evaluation

4.1 Building Description

The building was originally constructed in 1948 as a single-story structure. The structure has a total area of approximately 5,478 square feet between two buildings connected by a covered walkway. The structural system does not appear to have been

substantially altered since the time of original construction. See Appendix A for original construction drawings.

The Elementary School is a wood bearing wall structure. The west building is rectangular in plan, approximately 40 feet by 135 feet, with three separate roof levels. The east building is rectangular in plan, approximately 26 feet by 52 feet, with two separate roof levels. There are no adjacent structures built directly against the elementary school structure. The only adjacent structure is the Quonset Hut located approximately seven feet away to the east.

The roof structure consists of 1x wood decking supported by either 4x wood roof joists at 3'-3" on center or 2x wood roof joists at 16" on center. Roof joists are supported at each end by wood stud bearing walls or wood posts and beams above windows and doors. The exterior walls are constructed with 2x wood studs at 16" on center. The walls are supported by below-grade concrete stem walls with continuous strip footings. Interior and exterior wood posts are supported by the below-grade concrete stem walls as well. The floor consists of a concrete slab-on-grade and an elevated concrete slab over the below-grade mechanical tunnel.

The building's lateral force resisting system consists of wood shear walls. The ASCE 41 Model Building Type is W2. The perimeter wood walls have several openings for windows and doors. The wood shear walls transfer lateral loads to the foundation.

The roof diaphragm is straight 1x decking that spans between wood shear walls. The diaphragm is considered flexible relative to the shear walls that support it.

The exterior face of the building is clad with a mixture of cedar wood shingles and lightgauge metal siding. The interior partitions are primarily wood stud walls with a plaster finish. However, there are hollow 8" concrete masonry unit (CMU) block partition walls around the boiler room and hallway at the original main entrance.

4.2 Building Condition Assessment

The Elementary School was assessed using only the visual condition of the structural components, building systems, and building envelope during the September 13, 2018 site visit. The building condition assessment is based on what was accessible to view with non-destructive methods. The condition of components in the attic was not assessed. The condition assessment of the mechanical, electrical, and plumbing (MEP) systems and the building envelope are outside of our professional expertise. However, the condition assessment of these systems is based on our professional opinion and experience with similar buildings.

City of Manzanita School Structural Evaluation 18111.00 Page 5 of 17

The west building wall is significantly deteriorated due to the apparent failure of the envelope protection system, notably a lack of paint and failure of caulking. As such, we estimate 80% of the wood framing is likely experiencing dry rot and may need to be replaced along with the entire siding system. Photos of the current conditions are shown below.

Figure 1: Deteriorated Siding

Figure 2: Deteriorated Window Sill

In general, the Elementary School is in poor condition and appears to have suffered from many years of deferred maintenance and neglect. The observations of the condition assessment are summarized in Table 2 below.

TABLE 2 – Elementary School Building Condition Assessment			
Component	Building Condition Assessment		
Foundation	The foundation along the west side of the building is severely deteriorated and exposing the exterior wall sill plate's anchor bolts. Exposed anchor bolts are severely corroded and need to be replaced. The foundation along the east wall closest to the Quonset Hut shows significant cracking. See Figures 3 & 4.		
Exterior Walls	Exterior finishes along the west side of the building show significant deterioration and water damage. Exterior window sills show evidence of water damage and potential water infiltration and dry rot of wood studs. Wood posts along the west side show significant water damage in some locations.		
Masonry Walls	Masonry walls have significant cracking.		
Masonry Chimney	The masonry chimney has significant cracking and poor waterproofing at the base. The masonry chimney presents a structural hazard.		

TABLE 2 – Elementary School Building Condition Assessment [continued]		
Component	Building Condition Assessment	
Roof/Ceiling	The roof shows locations of ponding due to inadequate roof slope provided. The gutters and downspouts are backed up and are not draining water adequately off the roof. Locations observed of water staining on ceiling tiles, which indicates that roofing system repairs are needed. See Figure 5.	
MEP Systems	The mechanical system appears to be inoperable and likely needs to be replaced. The electrical system appears to be inadequate and needs to be upgraded. The plumbing system appears to be partially inoperable and likely needs to be repaired or replaced. See Figure 6	

Figure 3: Foundation Deterioration

Figure 4: Exposed Anchor Bolts

Figure 5: Roof Ponding and Moss Buildup

City of Manzanita School Structural Evaluation 18111.00 Page 7 of 17

Figure 6: Cracked CMU Wall and Outdated Electrical

4.3 Structural Evaluation and Deficiencies

Based on our structural evaluation, we have identified structural deficiencies in the lateral and gravity systems. We evaluated the roof joists and wood posts under the current snow load criteria as provided in Section 2. The roof joists at the lower roofs on the west building have inadequate strength to resist the snow drifts expected to accumulate. The bearing walls are deemed structurally adequate based on observation of their construction, stud height, and spacing and were not evaluated.

For the lateral system, the 2014 OSSC wind loading was compared to the seismic loads calculated using ASCE 41-17. The structural demand on the lateral resisting system from wind loads is significantly less than the demand from seismic loads. Therefore, the structural evaluation of the lateral resisting system was based primarily on seismic loads.

Based on the gravity and lateral evaluation, numerous deficiencies were identified and are presented in Table 3 on the next page. Structural calculations are provided in Appendix C.

TABLE 3 – Elementary School Structural Deficiencies		
Structural Component Type	Structural Deficiency	
	LATERAL DEFICIENCIES	
Load Path	The diaphragm does not contain a complete load path to the shear walls. There is no apparent load path via blocking between the diaphragm and the shear walls to transfer in-plane seismic forces to the shear walls. In addition, there is an inadequate load path from the upper roof diaphragm of the west building to the lower shear walls due to the windows above the covered walkway.	
Wall Stress Check	The straight-sheathed shear walls do not have adequate strength to resist expected seismic in-plane shear forces.	
Narrow Wood Shear Walls	Some of the shear walls have an aspect ratio (height/length ratio) greater than 1.5-to-1.	
Straight Roof Sheathing	The 1x6 wood straight-sheathed diaphragms have aspect ratios greater than 2-to-1, which may result in large displacements. In addition, the diaphragms have insufficient strength to resists seismic shear forces.	
Wood Posts	Wood posts do not have a positive connection to the foundation.	
Proportions	Unreinforced hollow CMU walls exceed the height-to-thickness ratio of 13 and have the potential for damage caused by out-of-plane forces.	
GRAVITY DEFICIENCIES		
Roof Joists	The existing 4x12 at 3'-3" on center and 2x8 at 16" on center wood roof joists have inadequate strength to resist the current drift snow load at locations of snow drift at the southwestern lower roofs.	

4.4 Conceptual Strengthening Scheme

Based on the building condition assessment, we have developed conceptual remediation measures to address the deficiencies in Section 4.2. The conceptual remediation measures are presented in Table 4 below.

TABLE 4 – Elementary School Building Condition Assessment Conceptual Remediation		
Component	Remediation Measure	
Foundation	At deteriorated foundations, chip away the exposed concrete until quality concrete is reached. Place new concrete footing with #4 dowels at 12" on center into the existing slab and the existing continuous footing. Replace corroded sill plate anchor bolts with new 5/8-inch-diameter epoxy anchor bolts with 6" embedment into the footing. See Figure 5 in Appendix B for more information.	

TABLE 4 – Elementary School Building Condition Assessment Conceptual Remediation [continued]		
Component	Remediation Measure	
Exterior Walls	Demolish and rebuild the exterior wood stud wall along the west side of the building with ½" plywood sheathing and studs to match the original wall width. Replace water damaged posts with new Douglas Fir-Larch #1 posts sized to match the existing posts. Replace siding along the entire building with Hardi-plank lap siding. Remove and replace metal siding where it occurs.	
Masonry Walls	Add a 60-mil fiber reinforced polymer (FRP) wrap to the exterior of cracked CMU walls.	
Masonry Chimney	Demolish the existing masonry chimney to below the new plywood sheathing. Install new $\frac{1}{2}$ " plywood sheathing over the top of the masonry chimney.	
Roof/Ceiling	Install new rigid insulation (4-inch-thick maximum) and membrane roof system over new ½" plywood sheathing. Replace gutters and downspouts.	
MEP Systems	Replace mechanical system. Upgrade electrical system to meet current code requirements. Replace plumbing system where required.	

Based on the structural evaluation, we have developed strengthening measures to address the deficiencies identified in Section 4.3. The conceptual strengthening measures are presented in Table 5 below.

TABLE 5 – Elementary School Conceptual Structural Strengthening Measures (Life Safety Performance Level)		
Structural Deficiency	Structural Strengthening Measure	
LATERAL		
Load Path	Infill windows above the covered walkway with wood-framed shear walls and sheath exterior face with 1/2" plywood. In addition, add blocking and clips between the shear walls and the diaphragm to transfer in-plane seismic forces from the diaphragm to the shear walls.	
Wall Stress Check	Remove shiplap at new shear walls where it occurs and add 1/2" plywood sheathing with fully blocked panel edges. Demo the existing masonry wall along the hallway at the original entrance and rebuild as 2x8 wood stud shear wall with 1/2" plywood sheathing. Add hold-downs at each end of selected shear walls. Additional studs may be needed at hold-downs. There are approximately 24 hold-down locations. Increase footing sizes at selected shear walls to resist the overturning demand on the shear walls.	
Narrow Wood Shear Walls	New narrow wood shear walls have been designed to have capacity for the seismic demand. See "Wall Stress Check" strengthening measure.	

TABLE 5 – Elementary School Conceptual Structural Strengthening Measures [continued] (Life Safety Performance Level)		
Structural Deficiency	Structural Strengthening Measure	
	LATERAL	
Straight Roof Sheathing	Add 1/2" plywood over the existing straight sheathing over the entire roof area with 10d at 4" on center at the edges and 12" on center in the field. At select locations on Figure 2, provide Simpson CMST16 along the edge of the diaphragm over the wall below.	
Wood Posts	Add two Simpson RPBZ with 3/8-inch-diameter expansion anchor bolts at each exterior post location. There are approximately six locations.	
Proportions	Install HSS 4x4x3/16 strongbacks at 5'-0" on center maximum. Provide 5/8-inch-diameter epoxy anchor bolts at 36" on center along full height of strongback and 6" minimum from top and bottom of HSS. Provide 6" embedment of epoxy anchor bolts in the masonry wall.	
GRAVITY		
Roof Joists	Sister Douglas Fir-Larch #2 2x12 to the existing 4x12 roof joists and Douglas Fir-Larch #2 2x8 to the existing 2x8 roof joists at locations where snow drift is expected to accumulate.	

5. Quonset Hut Evaluation

5.1 Building Description

The Quonset Hut has a total area of approximately 4,160 square feet. The building has a wood-framed mezzanine, 12 feet by 17 feet, located inside at the back of the structure. There are two 14-foot-high, exterior, nonstructural CMU piers at the front of the structure. There is also a 960-square-foot storage structure attached to the back of the Quonset Hut that is included in the total Quonset Hut area.

The Quonset Hut is a single-story glulam arch structure that is semi-circular in crosssection with a wood-bearing-wall-framed storage structure, 30 feet by 32 feet, attached. The building is rectangular in plan, approximately 40 feet by 110 feet. The Quonset Hut is approximately seven feet to the east of the Elementary School. There is an adjacent small, rectangular utility shed to the east of the Quonset Hut.

The roof of the Quonset Hut is composed of metal decking supported by 2x8 glulam arches at 2'-6" on center. The roof of the attached storage structure consists of metal roofing over particle board sheathing supported by pre-manufactured wood trusses at 2'-0" on center. The trusses are supported by wood stud bearing walls that are constructed out of 2x studs at 16" on center. At locations where the trusses bear on the wood stud walls over openings, they are supported by wood beam headers. The Quonset Hut arched structure has wood stud bearing walls at the north and south ends.

City of Manzanita School Structural Evaluation 18111.00 Page 11 of 17

Figure 7: Quonset Hut Interior

The floor system is a concrete slab-on-grade with assumed thickened footings under bearing walls. The walls and glulam arches are supported by a continuous concrete foundation.

The Quonset Hut arched structure resists lateral forces through the semi-circular metal diaphragm in the longitudinal direction (north-south) and through the glulam arches in the transverse direction (eastwest). In addition, there is plywood sheathing in the longitudinal direction that extends eight feet up on the

arch on both sides.

The lateral force resisting system at the attached storage structure consists of wood shear with particle board sheathing. The ASCE 41 Model Building Type is W2. The perimeter wood walls have some openings for windows and doors. The lateral force resisting system transfers loads to the foundation through anchor bolts.

The roof diaphragm of the Quonset Hut is semi-circular metal decking with multiple skylight openings. The roof diaphragm of the storage structure is particle board sheathing that spans between wood shear walls. The diaphragm is considered flexible relative to the shear walls that support it.

The exterior face of the building consists of a mixture of metal siding and cedar wood shingles. The interior partitions are wood stud walls with plywood sheathing. There are two exterior hollow CMU block piers at the front of the Quonset Hut.

5.2 Building Condition Assessment

The Quonset Hut was assessed on the visual condition of the structural components during the September 13, 2018 site visit. The condition assessment is based on what was accessible to view with non-destructive methods.

In general, the Quonset Hut is in fair condition for a building of its age. There are deferred maintenance items noted, but the Quonset Hut is in far better shape than the

Elementary School. The observations of the condition assessment are summarized in Table 6 below.

TABLE 6 – Quonset Hut Building Condition Assessment		
Component	Building Condition Assessment	
Foundation	At the Quonset Hut, the connections between the glulam arches and the foundation are severely corroded. In addition, there are trees growing close to the foundation that have potentially damaged the foundation. See Figure 8	
Exterior Walls	At the storage structure, there is evidence of water damage where exterior walls meet the grade, including rusted metal siding and rotted wood framing around openings. At the Quonset Hut, there is inadequate clear distance between the bottom of the exterior finishes and the final grade.	
Masonry Piers	Nonstructural masonry piers at the front of the Quonset Hut are free- standing and unbraced. The piers present a falling hazard during a seismic event.	
Roof	Metal decking at the storage structure is significantly corroded from water damage. The gutters appear to be damaged and the downspouts do not extend to the ground. There is noticeable metal siding corrosion. See Figure 9	

Figure 8: Rusted Glulam Arch to Foundation Connection

Figure 9: Storage Structure Deterioration

5.3 Structural Evaluation and Deficiencies

For the Quonset Hut gravity system, we evaluated the glulam arches under the current snow load criteria as provided in Section 2. The storage structure's pre-manufactured wood trusses were not evaluated and are assumed to be adequate based on observations of their construction and spacing. The bearing walls are deemed structurally adequate based on observation of their construction, stud height, and spacing. The Quonset Hut mezzanine floor's joist framing was not accessible to view and is assumed to be 2x12 joists at 24" on center. The framing is adequate for live loads corresponding to the classroom or office occupancy use (40-50 PSF). However, if the mezzanine is to be used for light storage, the live load required is 125 PSF and the assumed framing is inadequate. Additional 2x12 joists will be required to be installed centered in between the existing joists to achieve a storage use.

For the lateral system, the 2014 OSSC wind loading was compared to the seismic loads calculated using ASCE 41-17. The structural demand on the lateral resisting system from wind loads is significantly less than the demand from seismic loads. Therefore, the structural evaluation of the lateral resisting system was based primarily on seismic loads. The glulam arch connections were evaluated for the combination of the lateral and gravity loads. The metal roof decking size and fastening pattern of the glulam arch is unknown, but is assumed to be structurally adequate based on observation.

Based on the gravity and lateral evaluation, lateral deficiencies were identified and are presented in Table 7 on the next page. No gravity deficiencies were identified at the Quonset Hut structure. Structural calculations are provided in Appendix C.

TABLE 7 – Quonset Hut Structural Deficiencies (Life Safety Performance Level)		
Structural Component Type	Structural Deficiency	
	LATERAL DEFICIENCIES	
Load Path	The storage structure roof diaphragm does not contain a complete load path to the shear walls. There is no apparent load path via blocking between the diaphragm and the shear walls to transfer in- plane seismic forces to the shear walls.	
Mezzanine	The interior mezzanine is braced by interior wood stud walls with plywood sheathing. The provided load path is inadequate and needs to be strengthened.	
Wall Stress Check	The storage structure's particle-board-sheathed shears walls do not have adequate strength to resist the expected seismic in-plane shear forces.	
Narrow Wood Shear Walls	Some of the shear walls have an aspect ratio (height/length ratio) greater than 1.5-to-1.	
Other Diaphragms	The storage structure's roof diaphragm consists of a system other than wood, metal deck, concrete, or horizontal bracing. The particle board diaphragm has insufficient strength to resist seismic shear forces.	

5.4 Conceptual Strengthening Scheme

Based on the building condition assessment, we have developed conceptual remediation measures to address the deficiencies identified in Section 5.2. The conceptual remediation measures are presented in Table 8 below.

TABLE 8 – Quonset HutBuilding Condition Assessment Conceptual Remediation								
Component	Remediation Measure							
Foundation	At the Quonset Hut, install new galvanized L6x4x3/8 on each side of the existing glulam arch with a $\frac{1}{2}$ -inch-diameter thru-bolt and a $\frac{1}{2}$ -inch-diameter anchor bolt with 3" minimum embedment into the footing.							
Exterior Walls	At the storage structure, replaced rotted wood framing at openings where it occurs. Replace metal siding at the storage structure.							
Masonry Piers	At the Quonset Hut, demo the existing CMU piers. Rebuild as 2x8 wood piers with plywood sheathing and frame into the structure.							
Roof	At the storage structure, remove the existing metal roofing. Install new plywood per the comment in Table 9. Replace gutters and downspouts.							

Based on the structural evaluation, we have developed strengthening measures to address the deficiencies identified in Section 5.3. The conceptual strengthening measures are presented in Table 9 below.

c	TABLE 9 – Quonset Hut Conceptual Structural Strengthening Measures (Life Safety Performance Level)
Structural Deficiency	Structural Strengthening Measure
	LATERAL
Load Path	At the storage structure, add blocking and clips between the shear walls and the diaphragm to transfer in-plane seismic forces from the diaphragm to the shear walls.
Mezzanine	Add ½" plywood sheathing to the mezzanine diaphragm with 10d at 6" on center at the edges and 12" n center in the field. Strengthen plywood sheathing nailing to 10d at 6" on center at the edges at the interior wood stud walls. Provide 5/8-inch-diameter adhesive anchor bolts at 3'-0" on center along the sill plate.
Wall Stress Check	At the storage structure, remove the particle board sheathing at new selected shear walls and add ½" plywood sheathing with fully blocked panel edges and nailing per Figure 4 in Appendix B.
Narrow Wood Shear Walls	At the storage shed, new narrow wood shear walls have been designed to have capacity for seismic demand. See "Wall Stress Check" strengthening measure.
Other Diaphragms	Remove metal roofing. Overlay new 1/2" plywood sheathing with 10d at 4" on center at the edges and 12" on center in the field. Block all panel edges.

6. Demolition

We have provided a conceptual estimate of the probable construction costs associated with the option to demolish the Elementary School and the Quonset Hut. The demolition option accounts for the complete demolition and disposal of the buildings and foundations, the removal of utility lines back to the point of connection with the utility, and rough grading of the site after demolition. We have not accounted for hazardous materials abatement and assume a local qualified abatement contractor will be consulted for this portion of the demolition.

7. Conceptual Estimate of Probable Construction Costs

We have developed an estimate of probable construction costs for remediation of the Elementary School and the Quonset Hut. Expected construction costs include contingencies for design, construction, and other marginal adjustments.

MEP systems and the building envelope are outside of our professional expertise. However, the estimated cost for MEP systems and the building envelope remediation are based on our professional opinion and experience with similar buildings. We have also included an allowance for the replacement of doors and windows. The contingency costs account for the uncertainty in the MEP and building envelope remediation estimate. If a more accurate and detailed cost estimate for these systems is desirable, a qualified consultant should be contacted.

In addition, the cost estimate does not account for hazardous materials abatement. We assume the City of Manzanita will use the asbestos study from 2017 to gather bids from local qualified abatement contractors to determine this portion of the building renovation or demolition expense as this work will be needed for either option.

7.1 Remediation Cost Estimate

A summary of the expected costs of the remediation option for the Elementary School and the Quonset Hut is provided in Table 10 below. See Appendix D for the complete cost estimate.

TABLE 10 – Remediation Cost Estimate								
Construction Category	Elementary School	Quonset Hut						
Structural Strengthening	\$29,940	\$14,319						
Condition Remediation	\$646,055	\$116,306						
Demolition	\$58,889	\$14,036						
Margins & Adjustments	\$587,744	\$115,697						
Total	\$1,322,628	\$260,358						
Total Area	5,478 Sq. Ft.	4,160 Sq. Ft.						
\$/Sq. Ft.	\$241	\$63						

7.2 Demolition Cost Estimate

A summary of the expected costs of the demolition option for the Elementary School and the Quonset Hut is provided in Table 11 below.

TABLE 11	TABLE 11 – Demolition Cost Estimate									
Construction Category	Elementary School	Quonset Hut	Both Buildings							
Building Demolition	\$89,545	\$39,015	\$128,560							
Site Utilities	\$22,000	\$10,000	\$32,000							
Earthwork	\$8,250	\$35,000	\$11,750							
Contingencies	\$95,809	\$42,000	\$137,810							
Total	\$215,604	\$94,515	\$310,120							
Total Area	5,478 Sq. Ft.	4,160 Sq. Ft.	9,638 Sq. Ft.							
\$/Sq. Ft.	\$39	\$23	\$32							

8. Limitations

The opinions and recommendations presented in this report were developed with the care commonly used as the state of practice of the profession. No other warranties are included, either expressed or implied, as to the professional advice included in this report. This report has been prepared for the City of Manzanita to be used solely in its structural evaluation of the buildings included herein. This report has not been prepared for use by other parties and may not contain sufficient information for purposes of other parties or uses.

Appendix A

ORIGINAL CONSTRUCTION DRAWINGS

	[075	V A TI O A	
A, A :< 16	N 0.,		1. Je. 82	Fixes	AUNING	
ſ	3	29.9	~ 7.3 × 1 ^{5/} 8	13	9	(2 S B)
2	3	9.4	× 4-2" × 178	2	CASEMENT	*1. " CZ 4070
3	2	5.5*	x 2-6- x 156	in a start of the	2	INDISTRE
4	2	9-4	x 2'-6 x 1 50		3	и
5	1	5-6	x 2'0' x 1 78	۵. ۱۹۹۹ - ۲۰۰۹ ۱۹۹۹ - ۲۰۰۹ - ۲۰۰۹	2	4

:	0008	5 C 7 E 5	Q L #		
M A 8 K	К о -	Siz S	STYLE	GLASS	WOOD
Α.	2 8 K.	6-0"× 6'-8"× 2"	テレンダン	B) in CRYSTAL	712
8		3-0" + 6:9" × 2"	4 4	4 4	4
<u>د</u>	4	3-0" x 6-8" x 134"	3 744 2 .	tor light DSB	,
C 1	1	2-3" + 6-8" + 134	3 PANCE	& C 4 5	. a
E	2	2'-8'' x 6 - 5'' x - 1 ³ '4'	в. о	()	y .
۴	8	2-6-2 6-5 2 (3 3	1 1	a.	
6	1	Z-8"× G-5"	IRON CLAD	я	-
н.	1 P.R.	5-0"x 6-8" x 13/4"	8:4484	1	
J	2	3-0'x 6 9'x 13/4'	y	£.	

ELECTRICAL SYMBOLS-

- OUPLEX CONVENIENCE OUTLET
- OE RADIO & "
- CLOCK CLOCK TELEPHONE
- +S SWITCH +S' SIWAY SWITCH
- () CEILING OUTLET, CAPACITY. CLASS RM
- OBTLETS WIRED FOR SOO WATTS FACA. HALL & SMALL RMS 200 WATTS EA.

							26'0"		<u>9:3</u> ,	+	
				INFILLED - HE PHOTOS			a	.e.s sroav waich (. 5. d	
	Net bijete Ensmere		14	α, 1 99	(4) (4)		×. ×. ;: > 0 0 0			14 : 4' 12' 5' 08	
	13- 5'	12'-5']2-5	i 12'-6	20.5		Caller Contraction	12 4 5 0" = 14"-0	4 0 12 4 4 4 4 4 4 5 7 5 7 5 7 5 7 5 7 5 7 5 7	9:4"	2.8 2.8 2.8
0	₩ ₩		P A	22 - <u>5 5 A</u> 5 5 7 2 12 4 -	1 1 <u>5 5</u>	3 * C 1 / D # -		4551 73 - 71 32 - 73	H HOJI Contro An An An An An An An An An An An An An	ă.	
	Book CAPS TA	CK BO		Biocks Thic	مت بي	іск ве." Д	- <u>11</u> - <u>1</u> 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H 5 A T 10-0 A 12-5	and a second sec	
. 0 . 92	9 9 9 8 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9	<u>CLASS E</u>	С. 2004		<u>A</u> -)] <u>CLASS</u>	B	A ALE ROLL	1764 (1) (1764 (1) (1) (1) (1)	20 CINANIS DISTRID PART	Í.
		36-6° x 12 	2 4 - 10° - X - X	L CHOUR	вр. 	36-6 24	24 - 10 57 2-5		PRIN Is a sizes		CHA
	4 1 [*]	(1) 29'-6°		<u>1'-7'</u>		(l) 29-6-	FLAGPS	4 45 4 45	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		
				95	<u>: 4*</u>		i :	<u></u>			5-1
										NALX	ĸ

1

A3

	# _ 0	0 %	WALLS		WAINSCOTE		GELLING		TRW	
KORM	HATERING	FINISH	N.A.T.	FIN	N. A T.	FIN.	<u> </u>	2 / 43	<i>k</i> ≯ †.	FIN.
C1455	CONCRETE	ASPNALT TILE	PLASTER	PAIN7	kan a		OPEN TINACA FIBRED	12:51:22 11:5 T	₹ 16.	7 # 4 S
PRINCIPAL		J. a.	1 WALL BR. 7:12:	j.	8082		F192690	4	y.	25
HALL	n.	й, с	FLASTER	•	F IR	14197	•	P	р	
PRIMARY TOTSETS		y	þ	ų	9	P	A	4		м
TOILETS		-			PLASTER	4			•	4
HEAT.		-	HOLLOW THE	NAT			OFEN TIMESS	WATER PRINT		ų
PLAY SHED		~	0154 11484	g 0			1.1	\$¥.⊁.7.	FAINT & WIN	s e e e s Pauls

A7

Appendix B

CONCEPTUAL STRENGTHENING SCHEME

C:IUsersikylesiappdatallocalitempIAcPublish_79481180111.00_FIG. 1.dwg_10/15/18 11:55 \$(GETVAR, 3

PLAN NOTES:

- 1. EXISTING CONDITIONS ARE SHOWN WITHOUT GUARANTEE OF ACCURACY. VERIFY IN FIELD.
- 2. SEE FIGURE 4 FOR SHEAR WALL AND HOLD DOWN SCHEDULE.
- REMOVE ALL (E) WOOD SIDING/SHINGLES AND REPLACE WITH (N) HARDIPLANK LAP SIDING.
 REMOVE SHIPLAP SHEATHING AT SHEAR WALLS.
 REMOVE (E) METAL SIDING AND REPLACE WITH (N) METAL SIDING IN KIND.

SHEET KEYED NOTES:

- (1) (E) CONC. SOG, TYPICAL ALL BUILDINGS.
- REMOVE (E) SHIPLAP SHEATHING AND WALL FRAMING ALONG GRIDLINE F AND G. REBUILD WALL W/ 2x6 AT 16"OC STUDS AND ¹⁵/₃₂" PLYWOOD SHEATHING.
- (d) DEMO (E) MASONRY WALL AND REBUILD AS 2x8 WOOD STUD WALL.
- (5) INSTALL HSS 4x4x¾6 STRONGBACK W/ ⅔ DIA EPOXY ANCHOR AT 36" OC AND 6" MINIMUM FROM TOP AND BOTTOM OF STRONGBACK. SPACE HSS AT 5'-0" OC MAX.
- 6 REPAIR DETERIORATED FOOTING ALONG GRIDLINES A, F AND G. SEE FIGURE 5.
- (7) NEW FOOTING EXTENSION UNDER SHEAR WALL. SEE FIGURE 6.
- (8) INDICATES TYFO BCC FRP SYSTEM OVER CRACKED CMU WALL.

		CITY OF MANZANTIA	ELEMENTARY SCHOOL STRUCTURE	SIKUCIUKAL EVALUATION	
DATE:	10/15/2018	JOB NUMBER:	180111.00	PAGE REFERENCE:	
	s = (ы Э	ET № UF 1	o. RE	

PLAN NOTES:

1. EXISTING CONDITIONS ARE SHOWN WITHOUT GUARANTEE OF ACCURACY. VERIFY IN FIELD.

SHEET KEYED NOTES:

- 1 INSTALL ¹⁵/₃₂" PLYWOOD SHEATHING W/ 10d AT 4" OC AT EDGES AND 12" OC IN THE FIELD OVER (E) 1x STRAIGHT SHEATHING. INSTALL (N) 4" RIGID INSULATION AND MEMBRANE ROOF SYSTEM OVER PLY SHTHG. TYPICAL ALL ROOFS.
- 2 SISTER DF-L #2 2x12 ALONG SIDE (E) 4x12
- 3 SISTER DF-L #2 2x8 ALONGSIDE (E) 2x8 FRAMING
- (4) DEMO (E) MASONRY CHIMNEY TO BELOW PLYWOOD SHTHG. SHEATH OVER TOP
- (5) INFILL WINDOWS ABOVE COVERED WALKWAY W/ 2x STUDS AT 16" OC TO MATCH WALL WIDTH. INSTALL PLYWOOD SHTHG PER SHEAR WALL TYPE A. SEE FIGURE 4.
- 6 INSTALL (2) SIMPSON CMST12

		CITY OF MANZANITA	ELEMENTARY SCHOOL STRUCTURE	SIKUCIUKAL EVALUATION
DATE:	10/15/2018	JOB NUMBER:	180111.00	PAGE REFERENCE:
	s F I(G	UF 2	o. RE

PLAN NOTES:

- 1. EXISTING CONDITIONS ARE SHOWN WITHOUT GUARANTEE OF ACCURACY. VERIFY IN FIELD
- 2. SEE FIGURE 4 FOR SHEARWALL AND HOLD DOWN SCHEDULE

SHEET KEYED NOTES:

- (E) CONC SOG
- (E) MEZZANINE ABOVE. INSTALL $15\!\!/_{32}$ " PLYWOOD SHTHG W/ 10d AT 6" OC AT PANEL EDGES AND 12" OC IN FIELD
- GALVANIZED L6x4x% EACH SIDE OF (E) GLULAM ARCH W/ ½" DIAMETER THRU-BOLT AND ½" DIAMETER AB W/ 3" MIN EMBEDMENT INTO FOOTING.
- (4) REPLACE SHTHG W/ ¹⁵/₃₂" PLYWOOD SHTHG 8'-0" UP ARCH
- 5 DEMO (E) CMU PIERS AND REBUILD AS 2x8 WOOD PIERS
- 6 STRENGTHEN EXISTING PLY SHEATHING NAILING TO 10d AT 6" OC AT PANEL EDGES AND STRENGTHEN SILL PLATE ANCHOR BOLTS TO ⁵/₄" DIAMETER EPOXY ANCHOR BOLTS AT 3'-0" OC.
- REMOVE (E) METAL DECK AND (E) SHTHG. REPLACE W/ ¹%₂" PLY SHTHG W/ 10d AT 4" OC AT EDGES AND 12" OC IN THE FIELD. BLOCK ALL PANEL EDGES. INSTALL (N) METAL DECK.
- 8 (E) METAL DECK

	SHEAR WALL SCHEDULE									
MARK	K SHEATHING SI		PA	NEL NAI	LING	PANEL	SILL		SILL NAILING	VALUE
			SIZE	EDGE	FIELD	BLOCKING	PLATE	ANCHOR BOLIS		(PLF)
$\overset{\land}{\longleftrightarrow}$	15/32" APA RATED SHEATHING WITH STUDS AT 16" OC	ONE	8d	6" OC	12" OC	2x	2x	5/8" x 6" EMBED AT 40" OC	16d AT 6" OC	520
	15/32" APA RATED SHEATHING WITH STUDS AT 16" OC	ONE	8d	3" OC	12" OC	2x	2x	5/8" x 6" EMBED AT 32" OC	16d AT 3" OC	980
NOTES	S:									
1. 2. 3. 4.	 NOTES: 8d NAIL = 2 ½" x 0.131" COMMON. IF AB SPACING IS GREATER THAN SHEAR WALL LENGTH INSTALL (1) AB WITHIN 12" OF EACH END. NAIL SIZES SHOWN ARE FOR COMMON NAILS OR GALVANIZED BOX. POWER DRIVEN NAILS SHALL COMPLY WITH ESR 1539 FOR RECOMMENDED SPACING AND INSTALLATION TO COMPLY WITH THE ABOVE SHEAR WALL SCHEDULE. SILL PLATE ANCHORS SHALL INCLUDE A STEEL PLATE WASHER NOT LESS THAN 0.229"x3"x3" IN SIZE PER AF&PA SDPWS SECTION 4.3.6.4.3. THE HOLE IN THE PLATE WASHERS SHALL BE PERMITTED TO BE DIAGONALLY SLOTTED W/ A WIDTH OF UP TO 3/16" LARGER THAN THE BOLT DIAMETER AND A SLOT LENGTH NOT TO EXCEED 1 3/4", PROVIDED A STANDARD CUT WASHER IS PLACED BETWEEN THE PLATE WASHER AND THE NUT. THE PLATE 									
5. 6.	 WASHER SHALL EXTEND TO WITHIN 1/2" OF THE EDGE OF THE BOTTOM PLATE ON THE SIDE(S) WITH SHEATHING. 5. WHERE SHEAR DESIGN VALUES EXCEED 700 POUNDS PER LINEAR FOOT (350 PLF ASD), ALL FRAMING MEMBERS RECEIVING EDGE NAILING FROM ABUTTING PANELS SHALL NOT BE LESS THAN A SINGLE 3-INCH NOMINAL MEMBER, OR TWO 2-INCH NOMINAL MEMBERS LAMINATED TOGETHER WITH 16d NAILS AT 6" OC TO TRANSFER THE DESIGN SHEAR VALUES BETWEEN FRAMING MEMBERS. WOOD STRUCTURAL PANEL JOINT AND SILL PLATE NAILING SHALL BE STAGGERED IN ALL CASES. SEE 1/S7.1 FOR ADDITIONAL INFORMATION. 6. SHEAR WALL NAILING MUST BE INSTALLED SUCH THAT THE NAIL HEAD OR CROWN IS FLUSH WITH THE SURFACE OF SHEATHING. OVERDRIVEN OR OVER PENETRATED NAILS WILL NOT BE ALLOWED OR COUNTED AS 									
7.	ALL PANEL EDGES S	SHALL B	E BLOCH	KED AS N	NOTED.					

	HOLDOWN SCHEDULE										
MARK	HOLDOWN	WOOD MEMBER	WOOD FASTENER	ANCHOR BOLT	ANCHOR BOLT EMBEDMENT (IN)	COMMENTS	VALUE (LBS)				
	NONE REQD										
	(S) HDU2-SDS2.5	N/A	3,075								
NOTES:											
1. 2. 3. 4.	 DOUBLE STUDS ARE REQUIRED AT HOLDOWNS UNLESS NOTED OTHERWISE. DOUBLE STUDS SHALL BE LAMINATED TOGETHER WITH 16d NAILS AT 6" OC. PROVIDE HOLDOWN NOTED WITHIN 6" FROM EACH END OF EACH SHEAR WALL SHOWN ON PLANS. INSTALL ANCHORS PER MANUFACTURER'S RECOMMENDATIONS. ANCHOR BOLTS SHALL BE ASTM F1554 GRADE 36. ASTM A36 THREADED ROD MAY BE USED AT CONTRACTOR'S OPTION 										

SHEAR WALL SCHEDULE

C7 5 @. **AUDIOMIANE** 8510. A**UDIOMIANO AUDIOMIC** DFC >97 HBC . **AUDIOMICO AUDIO**MI

CITY OF MANZANITA ELEMENTARY SCHOOL STRUCTURE STRUCTURAL ELEVATION

FIGURE 4

DETERIORATED FOOTING REPAIR CITY OF MANZANITA ELEMENTARY SCHOOL STRUCTURE STRUCTURAL ELEVATION

C7 5 (4) Announcement 8514) Announcement DFC >97 HBC Announcement FIGURE

5

Appendix C

STRUCTURAL CALCULATIONS

I. Elementary School Structure

WISGS Design Maps Summary Report

User-Specified Input Report Title City of Manzanita School Evaluation
Fri September 28, 2018 15:20:08 UTC Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-1N
(which utilizes USGS hazard data available in 2008) Site Coordinates 45.7207°N, 123.93061°W Site Soil Classification Site Class D – "Stiff Soil"

USGS-Provided Output

S_{xs,bse-1N} 0.888 g

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

Design Maps Summary Report

Design Maps Summary Report ≋USGS

FOR TIER 1 SCREENING ONLY

User-Specified Input

Report Title City of Manzanita School Evaluation Fri September 28, 2018 15:21:37 UTC

Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-2N (which utilizes USGS hazard data available in 2008) Site Coordinates 45.7207°N, 123.93061°W

Site Soil Classification Site Class D - "Stiff Soil"

USGS-Provided Output

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

Project No. 18111.00

Checked:

Date: 10/01/18

Design: KS Section:

Page: _____of____

M	ain	1

Material	Qty	Tributary	Units	Weight	Units	Total Weight (kips)	
Roof	1			1		1	_
1x6 Shiplap Decking	1	2496	sf	3	psf	7.5	
Insulation	1	2496	sf	1.0	psf	2.5	
Framing	1	2496	sf	3.0	psf	7.5	
Ceiling	1	2496	sf	2	psf	5.0	
Acoustical Tile	1	2496	sf	1.0	psf	2.5	
M & E	1	2496	lf	3.0	plf	7.5	
Misc	1	2496	sf	2.0	psf	5.0	
<u>Canopy</u>							
Canopy	1	984	sf	12.0	psf	11.8	
Walls	<u> </u>	<u> </u>		<u> </u>			
East/West Wall	,	100		00.0	c		
8° CMU Walls	1	130	st	30.0	pst	3.9	
wood walls	I	1252	ST	15.0	pst	18.8	
North/South Wall							
8" CMU Walls	1	254	sf	30.0	psf	7.6	
Wood Walls	1	629	sf	15.0	psf	9.4	
				Total Load	4 = <u> </u>	89.0	kip

Project No. 18111.00 Date: 10/01/18 Section: _____ Design: KS SUBJECT: Base Shear - Main 1 engineers PROJECT: City of Manzanita School Structural Evaluation Checked: Page: _____of__

Base Shear - Main 1

Seismic Design Parameters (site Specific):

Sxs =

Sx1 =

Cm =

103

kips

BSE-1N

0.888

0.681

1 1.4 $C_1 = 1.4$ $C_2 = 1$

Floor	Incr. Ht. ft.	Height ft	Elevation ft	Diaphragm Seis Weight kips	N-S Wall Seis Weight kips	E-W Wall Seis Weight kips	N-S Direction Diaphragm Seis Weight kips	E-W Direction Diaphragm Seis Weight kips
Roof	13.00	13.00	13.00	49	17	23	66	72
Summation:				49	17	23	66	72

Approximate Code Period :	BSE-1N	
В =	0.75	
Ct =	0.020	
T _L =	12.00	
To =	0.153	
Ts =	0.767	
Period Used to Estimate Base Shear; T =	0.137	seconds
k =	1.000	
b =	0.050	
B ₁ =	1.002	
Response Spectrum Acceleration, Sa =	0.829	

			psuedo	o lateral force,	$V = C_1 C_2 C_m S_a W =$	1.161
			E-W Direction	OUTPUT		
Total Weight kips	wihi ^k kip-ft	Сvх	Story Force (Fx) kips	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx) kips	Diaphragm Force (Fpx) kips
89	1,157	1.000	103	1.16	72	83
89	1,157	1.000	103			

psuedo lateral force, V=

			N-S Direction	OUTPUT		
Total			Story	ΣF_i	Diaph. Seis.	Diaphragm
Weight	wihi ^k	Cvx	Force (Fx)	Σw_i	Weight (wpx)	Force (Fpx)
kips	kip-ft		kips	· ·	kips	kips
89	1,157	1.000	103	1.16	66	77
89	1,157	1.000	103			
103	kips					

SUBJECT: Elementary School Building Load Takeoff

Project No. 18111.00

Date: 10/01/18

Design: KS Section: Checked: _____

Page: _____of____

Main 2

Material	Qty	Tributary	Units	Weight	Units	Total Weight (kips)
Roof						
1x6 Shiplap Decking	1	1040	sf	3	psf	3.1
Insulation	1	1040	sf	1.0	psf	1.0
Framing	1	1040	sf	3.0	psf	3.1
Ceiling	1	1040	sf	2	psf	2.1
Acoustical Tile	1	1040	sf	1.0	psf	1.0
M & E	1	1040	lf	3.0	plf	3.1
Misc	1	1040	sf	2.0	psf	2.1
Canopy						
Walls		1		1	1	
East/West Wall						
Wood Walls	1	654	sf	15.0	psf	9.8
North (South Wall						
Wood Walls	1	372.0	sf	15.0	psf	5.6
		0, 2.0	51	10.0	P31	0.0
	-			Total Load	1 =	31.0

 Project No.
 18111.00
 Date:
 10/01/18

 SUBJECT:
 Base Shear - Main 2
 Design:
 KS
 Section:

 PROJECT:
 City of Manzanita School Structural Evaluation
 Checked:
 Page:
 of

Base Shear - Main 2

Seismic Design Parameters (site Specific):

Sxs =

Sx1 =

 $\begin{array}{ccc}
Cm = & 1 \\
C_1 = & 1.4 \\
C_2 = & 1
\end{array}$

36

kips

BSE-1N

0.888

0.681

Floor	Incr. Ht. ft.	Height ft	Elevation ft	Diaphragm Seis Weight kips	N-S Wall Seis Weight kips	E-W Wall Seis Weight kips	N-S Direction Diaphragm Seis Weight kips	E-W Direction Diaphragm Seis Weight kips
Roof	13.00	13.00	13.00	16	6	10	21	25
Summation:				16	6	10	21	25

Approximate Code Period :	BSE-1N	
В =	0.75	
Ct =	0.020	
T _L =	12.00	
To =	0.153	
Ts =	0.767	
Period Used to Estimate Base Shear; T =	0.137	seconds
k =	1.000	
b =	0.050	
B ₁ =	1.002	
Response Spectrum Acceleration, Sa =	0.829	

			psuedo	o lateral force,	$V = C_1 C_2 C_m S_\alpha W =$	1.161
			E-W Direction	OUTPUT		
Total Weight kips	wihi ^k kip-ft	Сvх	Story Force (Fx) kips	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx) kips	Diaphragm Force (Fpx) kips
31	403	1.000	36	1.16	25	29
31	403	1.000	36			

psuedo lateral force, V=

			N-S Direction	OUTPUT		
Total Weight kips	wihi ^k kip-ft	Сvх	Story Force (Fx) kips	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx) kips	Diaphragm Force (Fpx) kips
31	403	1.000	36	1.16	21	25
31	403	1.000	36			
36	kips					

Project No. 18111.00

Date: 10/01/18

Design: KS Section: Checked:

Page: _____of____

|--|

Material	Qty	Tributary	Units	Weight	Units	Total Weight (kips)
Roof						
1x6 Shiplap Decking	1	304	sf	3	psf	0.9
Insulation	1	304	sf	1.0	psf	0.3
Framing	1	304	sf	3.0	psf	0.9
Ceiling	1	304	sf	2	psf	0.6
Acoustical Tile	1	304	sf	1.0	psf	0.3
M & E	1	304	lf	3.0	plf	0.9
Misc	1	304	sf	2.0	psf	0.6
<u>Canopy</u>						
Walls						
Edst/West Wall	1	100	of	15.0	in of	0.7
		160	51	15.0	psi	2.7
North/South Wall						
Wood Walls	1	130.0	sf	15.0	psf	2.0
				Total Load	1 =	9.2

Project No. 18111.00 Date: 10/01/18 Section: _____ Design: KS SUBJECT: Base Shear - Main 3 engineers PROJECT: City of Manzanita School Structural Evaluation Checked: Page: _____of___ Base Shear - Main 3

Floor	Incr. Ht. ft.	Height ft	Elevation ft	Diaphragm Seis Weight kips	N-S Wall Seis Weight kips	E-W Wall Seis Weight kips	N-S Direction Diaphragm Seis Weight kips	E-W Direction Diaphragm Seis Weight kips
Roof	10.00	10.00	10.00	5	2	3	7	7
Summation				F	0	2	7	7
summation:				5	2	3	/	/

Approximate Code Period :	BSE-1N	
В =	0.75	
Ct =	0.020	
T _L =	12.00	
To =	0.153	
Ts =	0.767	
Period Used to Estimate Base Shear; T =	0.112	seconds
k =	1.000	
b =	0.050	
B ₁ =	1.002	
Response Spectrum Acceleration, Sa =	0.744	

psuedo lateral force, $V = C_1C_2C_mS_a W =$	1.042	W
--	-------	---

			E-W Direction	OUTPUT		
Total Weight kips	wihi ^k kip-ft	Cvx	Story Force (Fx) kips	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx) kips	Diaphragm Force (Fpx) kips
9	92	1.000	10	1.04	7	8
9	92	1.000	10			
10	kips					

psuedo lateral force, V= 10 kips

Seismic Design Parameters (site Specific):

Sxs =

BSE-1N

0.888 Sx1 = 0.681

 $\begin{array}{c}
Cm = & 1 \\
C_1 = & 1.4 \\
C_2 = & 1
\end{array}$ Cm =

			14 5 Direction	0011 01		
Total			Story	ΣF_i	Diaph. Seis.	Diaphragm
Weight	wihi ^k	Cvx	Force (Fx)	$\overline{\Sigma w_i}$	Weight (wpx)	Force (Fpx)
kips	kip-ft		kips	ť	kips	kips
9	92	1.000	10	1.04	7	7
9	92	1.000	10			

Project No. 18111.00

Date: 10/01/18

Design: KS Section: Checked:

Page: _____of____

Ma	ıin	4

Walls			[
MISC Canopy	1	1368	st	2.0	pst	2./
M & E	1	1368	lf	3.0	plf	4.1
Acoustical Tile	1	1368	sf	1.0	psf	1.4
Ceiling	1	1368	sf	2	psf	2.7
Framing	1	1368	sf	3.0	psf	4.1
Ix6 Shiplap Decking	1	1368 1368	sf sf	3	psf	4.1
Roof						
Material	Qty	Tributary	Units	Weight	Units	Total Weight (kips)

Floor	Incr. Ht. ft.	Height ft	Elevation ft	Diaphragm Seis Weight kips	N-S Wall Seis Weight kips	E-W Wall Seis Weight kips	N-S Direction Diaphragm Seis Weight kips	E-W Direction Diaphragm Seis Weight kips	
Roof	13.00	13.00	13.00	21	7	3	28	24	
Summation:				21	7	3	28	24	

Approximate Code Period :	BSE-1N	
В =	0.75	
Ct =	0.020	
T _L =	12.00	
To =	0.153	
Ts =	0.767	
Period Used to Estimate Base Shear; T =	0.137	seconds
k =	1.000	
b =	0.050	
B ₁ =	1.002	
Response Spectrum Acceleration, Sa =	0.829	

psuedo lateral force,	$V = C_1 C_2 C_m S_q W =$	1.161	W
	1 2 111 0		

	BSE-1N
Sxs =	0.888
Sx1 =	0.681
Cm =	1
C1 =	1.4
C2 =	1

Seismic Design Parameters (site Specific):

			E-W Direction	OUTPUT		
Total Weight kips	wihi ^k kip-ft	Сvх	Story Force (Fx) kips	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx) kips	Diaphragm Force (Fpx) kips
31	406	1.000	36	1.16	24	28
31	406	1.000	36			
36	kips					

psuedo lateral force, V= 36 kips

			N-S Direction	OUTPUT		
Total Weight kips	wihi ^k kip-ft	Cvx	Story Force (Fx) kips	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx) kips	Diaphragm Force (Fpx) kips
31	406	1.000	36	1.16	28	32
31	406	1.000	36			
36	kips					

Project No. 18111.00

Date: 10/01/18

Design: KS Section:

Checked:

Page: _____of____

	-
Main	5

Material	Qty	Tributary	Units	Weight	Units	Total Weight (kips)	
Roof	1	1			1	1	-
Tx6 Shiplap Decking	1	720	sf	3	psf	2.2	
Insulation	1	720	sf	1.0	psf	0.7	
Framing	1	720	sf	3.0	psf	2.2	
Ceiling	1	720	sf	2	psf	1.4	
Acoustical Tile	1	720	sf	1.0	psf	0.7	
M & E	1	720	lf	3.0	plf	2.2	
Misc	1	720	sf	2.0	psf	1.4	
<u>Canopy</u>							
Walls	1	1		T	1	1	
<u>East/West Wall</u> Wood Walls	1	387	sf	15.0	psf	5.8	
<u>North/South Wall</u> Wood Walls	1	245.0	sf	15.0	psf	3.7	
				Total Load	d =	20.3	kip

Project No. 18111.00 Date: 10/01/18 Section: _____ SUBJECT: Base Shear - Main 5 Design: KS engineers PROJECT: City of Manzanita School Structural Evaluation Checked: Page: _____ of___ Base Shear - Main 5 E-W Wall N-S N-S Direction E-W Direction

				Diaphragm	Wall	Wall	Diaphragm	Diaphragm
Floor	Incr. Ht.	Height	Elevation	Seis Weight				
	ft.	ft	ft	kips	kips	kips	kips	kips
Roof	10.00	10.00	10.00	11	4	6	14	17
Summation:				11	4	6	14	17

Approximate Code Period :	BSE-1N	
В =	0.75	
Ct =	0.020	
$T_L =$	12.00	
To =	0.153	
Ts =	0.767	
Period Used to Estimate Base Shear; T =	0.112	seconds
k =	1.000	
b =	0.050	
B ₁ =	1.002	
Response Spectrum Acceleration, Sa =	0.744	

psuedo lateral force, $V = C_1C_2C_mS_a W =$	1.042	W
--	-------	---

			E-W Direction	N OUTPUT		
Total Weight kips	wihi ^k kip-ft	Сvх	Story Force (Fx) kips	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx) kips	Diaphragm Force (Fpx) kips
20	203	1.000	21	1.04	17	17
20	203	1.000	21			

psuedo lateral force, V= 21 kips

Seismic Design Parameters (site Specific):

Sxs =

BSE-1N

0.888 Sx1 = 0.681

 $\begin{array}{c}
Cm = & 1 \\
C_1 = & 1.4 \\
C_2 = & 1
\end{array}$ Cm =

			N-S Direction	OUTPUT		
Total Weight	wihi ^k	Сvх	Story Force (Fx)	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx)	Diaphragm Force (Fpx)
kips	kip-ft		kips	1	kips	kips
20	203	1.000	21	1.04	14	15
20	203	1.000	21			
21	kips					

DIAPHRAGM DESIGN - Upper Roof

DIAPHRAGM DESIGN - Upper Roof

< 1.0, OK

DCR =

0.68

Plus and minus signs signify pressures acting toward and away from projected surfaces, respectively. For Case B use $\Theta = 0^{\circ}$

Total horizontal load shall not be less than that determined by assume ps = 0 in zones B & D

a= 10% of least horizontal dimension or 0.4h, whichever smaller, but bot less than either 4% of least horizontal dimention or 3ft.

10 % of least dimension=	4.2 ft	⇐
40 % of the eave height =	4.8 ft	
4 % of least dimension or 3 ft=	3.0 ft	
therefore a =	4.2 ft	

AT EACH DIAPHRAGM.

Project No. <u>18111.00</u>

Design: KS

Checked: _____

Date: 10/9/18 Section: ___

Page: ____

Shear Wall Force Distribution

Wall	Wall Length	Shear Force	Unit Shear	m-factor	k-factor	Design Shear	Height	Ar	SW Type	Nominal Capacity	Shear DCR
1	26.0 ft	51.5 k	1981 plf	3.8	0.75	463 plf	13.0 ft	0.5:1<3.5:1 OK	A	520	0.89
3-1	5.2 ft	17.3 k	3341 plf	3.8	0.75	782 plf	13.0 ft	2.51:1<3.5:1 OK	В	917	0.85
3-2	4.0 ft	3.3 k	827 plf	3.8	0.75	193 plf	10.0 ft	2.5:1<3.5:1 OK	в	919	0.21
4-1	6.0 ft	10.6 k	1769 plf	3.8	0.75	414 plf	13.0 ft	2.17:1<3.5:1 OK	В	960	0.43
4-2	7.0 ft	24.2 k	3458 plf	3.8	0.75	809 plf	13.0 ft	1.86:1<3.5:1 OK	В	980	0.83
4-3	4.0 ft	4.9 k	1220 plf	3.8	0.75	285 plf	10.0 ft	2.5:1<3.5:1 OK	В	919	0.31
6	37.0 ft	79.5 k	2149 plf	3.8	0.75	503 plf	13.0 ft	0.35:1<3.5:1 OK	В	980	0.51
8	12.5 ft	18.0 k	1440 plf	3.8	0.75	337 plf	12.0 ft	0.96:1<3.5:1 OK	Α	520	0.65
Α	26.0 ft	18.0 k	692 plf	3.8	0.75	162 plf	13.0 ft	0.5:1<3.5:1 OK	Α	520	0.31
В	26.0 ft	25.9 k	995 plf	3.8	0.75	233 plf	13.0 ft	0.5:1<3.5:1 OK	Α	520	0.45
C-1	6.8 ft	13.1 k	1922 plf	3.8	0.75	450 plf	10.0 ft	1.46:1<3.5:1 OK	А	520	0.86
C-2	5.0 ft	5.0 k	1000 plf	3.8	0.75	234 plf	10.0 ft	2:1<3.5:1 OK	Α	520	0.45
D-1	35.0 ft	50.6 k	1447 plf	3.8	0.75	338 plf	13.0 ft	0.37:1<3.5:1 OK	Α	520	0.65
D-2	9.8 ft	14.1 k	1447 plf	3.8	0.75	338 plf	13.0 ft	1.33:1<3.5:1 OK	Α	520	0.65
E	17.3 ft	23.0 k	1327 plf	3.8	0.75	310 plf	12.0 ft	0.69:1<3.5:1 OK	Α	520	0.60
F-1	4.1 ft	9.8 k	2393 plf	3.8	0.75	560 plf	13.0 ft	3.19:1<3.5:1 OK	В	835	0.67
F-2	7.6 ft	18.1 k	2393 plf	3.8	0.75	560 plf	13.0 ft	1.72:1<3.5:1 OK	В	980	0.57
F-3	4.3 ft	10.4 k	2393 plf	3.8	0.75	560 plf	13.0 ft	3:1<3.5:1 OK	В	857	0.65
G-1	5.1 ft	9.0 k	1772 plf	3.8	0.75	414 plf	12.0 ft	2.36:1<3.5:1 OK	Α	496	0.83
G-2	5.1 ft	9.0 k	1772 plf	3.8	0.75	414 plf	12.0 ft	2.36:1<3.5:1 OK	Α	496	0.83

Shear Wall Overturning

Wall	Roof Trib	DL	MOT	MR	M DCR	Holddown
1	1.6 ft	180 plf	670 k-ft	61 k-ft	1.09	YES
3-1	13.0 ft	351 plf	225 k-ft	5 k-ft	4.75	YES
3-2	0.7 ft	130 plf	33 k-ft	1 k-ft	3.15	YES
4-1	17.5 ft	419 plf	138 k-ft	8 k-ft	1.82	YES
4-2	17.5 ft	419 plf	315 k-ft	10 k-ft	3.04	YES
4-3	4.5 ft	188 plf	49 k-ft	2 k-ft	3.23	YES
6	6.0 ft	246 plf	1034 k-ft	168 k-ft	0.61	NO
8	1.6 ft	168 plf	216 k-ft	13 k-ft	1.63	YES
Α	1.6 ft	180 plf	234 k-ft	61 k-ft	0.38	NO
В	8.8 ft	287 plf	336 k-ft	97 k-ft	0.34	NO
C-1	11.7 ft	295 plf	131 k-ft	7 k-ft	1.89	YES
C-2	7.6 ft	234 plf	50 k-ft	3 k-ft	1.69	YES
D-1	17.5 ft	419 plf	658 k-ft	256 k-ft	0.25	NO
D-2	17.5 ft	419 plf	183 k-ft	20 k-ft	0.91	NO
E	13.0 ft	339 plf	276 k-ft	51 k-ft	0.54	NO
F-1	13.0 ft	351 plf	127 k-ft	3 k-ft	4.31	YES
F-2	13.0 ft	351 plf	236 k-ft	10 k-ft	2.32	YES
F-3	13.0 ft	351 plf	135 k-ft	3 k-ft	4.06	YES
G-1	13.0 ft	339 plf	108 k-ft	4 k-ft	2.45	YES
G-2	13.0 ft	339 plf	108 k-ft	4 k-ft	2.45	YES

Design: KS

Checked: _____

Date: 10/9/18

Section: ___ Page: ____

Footing Overturning - Increased Footing Size

Wall	Ftg Width	Ftg DL	Ftg Length	MOT Ftg	Mr Ftg	DCR Ftg
1	1.5 ft	244 plf	26.0 ft	5 k-ft	82 k-ft	0.06
3-1	2.5 ft	356 plf	10.0 ft	16 k-ft	18 k-ft	0.89
3-2	1.5 ft	244 plf	5.0 ft	2 k-ft	3 k-ft	0.66
4-1	2.5 ft	356 plf	7.0 ft	6 k-ft	9 k-ft	0.63
4-2	2.5 ft	356 plf	10.5 ft	19 k-ft	20 k-ft	0.96
4-3	1.5 ft	244 plf	7.0 ft	3 k-ft	6 k-ft	0.50
8	1.5 ft	244 plf	26.0 ft	7 k-ft	82 k-ft	0.09
C-1	1.5 ft	244 plf	6.8 ft	6 k-ft	6 k-ft	0.97
C-2	1.5 ft	244 plf	9.0 ft	2 k-ft	10 k-ft	0.19
F-1	2.5 ft	356 plf	7.0 ft	9 k-ft	9 k-ft	1.00
F-2	1.5 ft	244 plf	10.0 ft	12 k-ft	12 k-ft	0.98
F-3	2.5 ft	356 plf	8.0 ft	9 k-ft	11 k-ft	0.80
G-1	2.5 ft	356 plf	6.0 ft	6 k-ft	6 k-ft	0.89
G-2	2.5 ft	356 plf	6.0 ft	6 k-ft	6 k-ft	0.89

	Project No. 18111.00	Date: 10/3/18
SUBJECT: MAIN BUILDING	Design: KS	Section:
WIKENSINCERS PROJECT: City of Manzanita School Structural Evaluation	Checked:	Page:
ROOF DIAPHRAGM CHORD FORCES		
E/W DIRECTION: $83 \frac{1}{26} FT = 3.19 \frac{1}{17} \rightarrow 7c = \frac{\omega l^2}{8cl} = \frac{(3.19)(3.6)^2}{8(9.6)} = 2$	808 ==> (2.5) (0.75)	: 1498#
N/S DIRECTION: $77^{K}/96 = 0.802 + 167 \rightarrow 7C = \frac{\omega l^{2}}{8d} = \frac{(0.802)(96)^{2}}{8(26)} = 35,4$	$535^{\#} =) \frac{35,535^{\#}}{(9.5)(0.75)}$	= 19,952
=> $f_{c,ew} = f_{t,ew} = \frac{1498^{\#}}{(2)(1.5)(5.5)} = 90.8 \text{ PS}i$ } DOUBLE $f_{c,NS} = f_{t,NS} = \frac{19,952^{\#}}{(2)(1.5)(5.5)} = 1209 \text{ PS}i$ }	2×6 TOP PLATE	
Fc: (DF-L NOI) = (1.6) (1500 psi) = 2400 psi > 1209 Ve Fe'= (DF-L No 1)= (1.6) (675 psi) = 1080 psi < 1209 =>	X NO GOOD.	
=) TRIPLE 2×6 PER DETAILS => 19,952 (3) (8.25.12) = 806	psi ⇒ Vok	•
NAILING:		

COLLECTOR :

LINE 5N: (14 FT) (770 PLF) = 10,780 # => 10.8 K

WORST SHEAR INTO WALL = 14" => COLLECTOR REQUIRED

			Project No. 18111-00	Date: 10/5/18
NAME OF	SUBJECT: STRONG BACK	-	Design: KS	Section:
WIK engineers	PROJECT: CITY OF MANZANITA	STRUCTURAL EVA	L Checked:	Page:

$$F_{p} = 0.4 \, \text{Sxs} \, X \, W_{p}$$

= 0.4 (0.888) (1.3) (30 psf) = 13.8 psf (contracts)
MIN F_{p} = 0.1 (1.3) (30 psf) = 3.9 ps F

STRONGBACK

Mu/12 = 8.42 K-FT => Mn = 8.42K-FT * 1.67

Mn = 14.1 K-FT = 14,100 LB-FT > 1691 LB-FT VOR

SUBJECT: Lower Roof Snow Drift -4x12 Framing

PROJECT: City of Manzanita School Evaluation

Date: 9/27/18

Section:

Design: KS

Project No. 18111.00

Checked:

Page: _____ of ____

SUBJECT: Snow Drift - 3x6 Roof

PROJECT: City of Manzanita School Evaluation

Date: 9/28/18

Section:

Design: KS

Project No. 18111.00

Checked:

Page: _____ of ____

Date: 9/28/18 Section:

Design: KS Checked:

Project No. 18111.00

Page: _____ of_____

2012 IBC Snow Londing for Low P	oofs and	d Docks		
2012 IBC SHOW LOCALING IOI LOW R	ode - AS	CE 7-10 Sections 7 7	-7879	
	2000 - 75		-7.0,7.7	
Input Data:				
Risk Category =	II			(Table 1.5-1)
Ground Snow Load, p _g =	25.0 psf		(Fig	jure 7-1, Table 7-1 for AK)
Roof Exposure =	Fully Expo	osed		(Table 7-2)
Terrain Category =	В			(Sec. 26.7)
Inermal Factor, $C_{\rm f}$ =	1.0			(Table 7-3)
Root Slope Factor, $C_s =$	1.0		(Sec. 7	(.4.1-7.4.4 and Figure 7-2)
Lengin of upper Root, I _u =	104.0 ft			
Length of Lower Root, $I_{\rm I}$ =	18.0 ft			
Height of Obstruction, $h_0 =$	4.0 ft			(5 7.0)
is upper root a supper surface?	NO	Minimum n. annlia	c for clopes < 2.10	(Sec. 7.9)
Lower Roof Slope =	1.000:12	Minimum pf applie	s for slopes < 3.12	
obbei kooi siobe -	1.000.12	Include sliding sho		
	u	ł		
	N/////////////////////////////////////	SURCHARGE	_OAD TING	
		OR SLIDING		
ے ج		BALANCED S	10W-	
		W		
	ł			
Con	figuration	of Snow Drift on Lov	ver Roof	
Results:	0.0			
Exposure Factor, C_e –	0.9			(Table 1-2)
Importance Factor, $I_s =$	1.00			(TODIE 1.3-2)
Flat Root Show Load =	15.6 psi	= 0.7 CerChis pg	*!~	(Eqn. 7.3-1)
p _m =	20.0 psi	pg > 20 psi, pm = 20	nd Flat Rood Snow Load	(Sec. 7.3.4)
	25.0 psi			(000.7.0.1)
Drifting Snow Case ASCE 7-10 Sec	tion 7.7			
Snow Density, y =	17.3 pcf	$= 0.13$ pg $+ 14 \le 30$		(Egn. 7.7-1)
Height of Balanced Snow, $h_b =$	1.4 ft	= pf/y		(Sec. 7.1)
Clear Height, $h_c =$	2.6 ft	= ho - hb		(Sec. 7.1)
Leeward Drift Height, h _{dl} =	3.4 ft	= 0.43(lu^0.33)((pg	+10)^.25)-1.5, where $lu \ge 20'$	(Figure 7-9)
Windward Drift Height, h _{dw} =	1.0 ft	= 0.75*(0.43(^0.33)((pg+10)^.25)-1.5), where 2	≥ 20' (Figure 7-9)
Design Drift Height, $h_d =$	2.6 ft	= min(hc and max	(hdl and hdw))	
$h_c / h_b =$	1.76	hc/hb≥0.2, Snow	Drifts are applied	(Sec. 7.7.1)
Drift Width(Case a), $w_a =$	10.2 ft	hd \leq hc then w _a =	$4hd - hd > hc$ then $w_a = 4hd$	² /hc (Sec. 7.7.1)
Drift Width (Case b), $w_b =$	20.4 ft	= 8hc	ŭ	(Sec. 7.7.1)
Controlling Drift Width, w =	10.2 ft	= min(wa and wb)	and≤Ll	(Sec. 7.7.1)
Drift Snow Load, pa =	44.0 psf	= γhd		(Sec. 7.7.1)
Drift Snow Load, pd,end =	0.0 psf	=pd*(w-Ll)/w	Note: pd Decreases to 0 lin	nearly
Total Snow Load, p _(total) =	69.0 psf	= pd+pf	Controls	
Silaing Snow Case ASCE 7-10 Sec		() 1*~f*\//1E ~\//1	*\//c)) Applied for los or 1 Eff.	lavinum (Sac ZO)
Sliding Snow Extent w -	0.0 ft	10.4 pr vv(10-5)/(10		(Sec. 7.9)
Max Snow Load p. =	0.0 m	Slope < 2.12	Does Not Apply	(Sec. 7.7)
max onon Load, pd -	0.0 psi	2000 - 2112		(350.7.7)

Title Block" selection.	innung &							
Title Block Line 6		Printed: 28 SEP 2018, 9:41AM ta Elementary School Structural Evaluation/Calcs/Gravity/2018-09-27 WRK18111 00 - Gravity Framing - V1 0 ec6						
Wood Beam			ENERCA	ALC, INC. 1983-2017, Build:10.17.12	.10, Ver:10.17.12.10			
Lic. # : KW-060107	783			Licensee :	WRK Engine			
Description : 6)	x8 Beam							
CODE REFER	ENCES							
Calculations per Load Combinatio	NDS 2015, IBC 2015, CBC 2016, AS n Set : ASCE 7-10	SCE 7-10						
Material Prop	erties							
Analysis Method :	Allowable Stress Design	Fb +	1350 psi	E : Modulus of Elasticity				
Load Combination	ASCE 7-10	Fb -	1350 psi	Ebend- xx	1600 ksi			
		Fc - Prll	925 psi	Eminbend - xx	580 ksi			
Wood Species :	Douglas Fir - Larch	Fc - Perp	625 psi					
Wood Grade :	No.1	FV Et	170 psi 675 psi	Donaitu	21 Oper			
Beam Bracing :	Beam is Fully Braced against lateral	-torsional buckling	010 psi	Density	31.2 µti			
		D(0.1) S(0.136)						
☆		☆		\$				
		6x8						
					· · · · ·			
1		Span = 12.670 ft						
•								
1					I			

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loads Uniform Load : D = 0.10, S = 0.1360, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span fb : Actual	= =	0.737:1 Ma 6x8 1,143.84psi	iximum Shear Stress Ratio Section used for this span fv : Actual	=	0.261 : 1 6x8 51.07 psi
FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs	= = =	1,552.50psi +D+S+H 6.335ft Span # 1	EV : Allowable Load Combination Location of maximum on span Span # where maximum occurs	= = =	195.50 psi +D+S+H 12.069 ft Span # 1
Maximum Deflection Max Downward Transient Deflec Max Upward Transient Deflectio Max Downward Total Deflection Max Upward Total Deflection	ction n	0.256 in Ratio = 0.000 in Ratio = 0.462 in Ratio = 0.000 in Ratio =	593 >=240 0 <240 329 >=180 0 <180		

Maximum Forces & Stresses for Load Combinations

								-								
Load Combination		Max Stres	s Ratios								Mon	nent Values			Shear Va	lues
Segment Length	Span #	Μ	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	C ^L	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.419	0.148	0.90	1.000	1.00	1.00	1.00	1.00	1.00	2.19	508.73	1215.00	0.62	22.71	153.00
+D+L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.377	0.134	1.00	1.000	1.00	1.00	1.00	1.00	1.00	2.19	508.73	1350.00	0.62	22.71	170.00
+D+Lr+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.301	0.107	1.25	1.000	1.00	1.00	1.00	1.00	1.00	2.19	508.73	1687.50	0.62	22.71	212.50
+D+S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.737	0.261	1.15	1.000	1.00	1.00	1.00	1.00	1.00	4.91	1,143.84	1552.50	1.40	51.07	195.50
+D+0.750Lr+0.750L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Project ID:

Printed: 28 SEP 2018, 9:41AM on\Calcs\Gravity\2018-09-27_WRK18111.00 - Gravity Framing - V1.0.ec6 ENERCALC, INC. 1983-2017, Build:10.17.12.10, Ver:10.17.12.10 Licensee : WRK Engineers

ita Elementary School Structural Evaluation

Wood Beam Lic. # : KW-06010783

Description :	6x8 Beam

Load Combination		Max Stres	s Ratios								Mon	nent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	C ^L	М	fb	F'b	V	fv	F'v
Length = 12.670 ft	1	0.301	0.107	1.25	1.000	1.00	1.00	1.00	1.00	1.00	2.19	508.73	1687.50	0.62	22.71	212.50
+D+0.750L+0.750S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.635	0.225	1.15	1.000	1.00	1.00	1.00	1.00	1.00	4.23	985.06	1552.50	1.21	43.98	195.50
+D+0.60W+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.236	0.084	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.19	508.73	2160.00	0.62	22.71	272.00
+D+0.70E+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.236	0.084	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.19	508.73	2160.00	0.62	22.71	272.00
+D+0.750Lr+0.750L+0.45	50W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.236	0.084	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.19	508.73	2160.00	0.62	22.71	272.00
+D+0.750L+0.750S+0.45	60W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.456	0.162	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.23	985.06	2160.00	1.21	43.98	272.00
+D+0.750L+0.750S+0.52	250E+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.456	0.162	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.23	985.06	2160.00	1.21	43.98	272.00
+0.60D+0.60W+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.141	0.050	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.31	305.24	2160.00	0.37	13.63	272.00
+0.60D+0.70E+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 12.670 ft	1	0.141	0.050	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.31	305.24	2160.00	0.37	13.63	272.00

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+S+H	1	0.4617	6.381		0.0000	0.000
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS	
Load Combination		Support	1 Support 2			
Overall MAXimum		1.5	52 1.552			
Overall MINimum		0.8	62 0.862			
+D+H		0.6	90 0.690			
+D+L+H		0.6	90 0.690			
+D+Lr+H		0.6	90 0.690			
+D+S+H		1.5	52 1.552			
+D+0.750Lr+0.750L+H		0.6	90 0.690			
+D+0.750L+0.750S+H		1.3	36 1.336			
+D+0.60W+H		0.6	90 0.690			
+D+0.70E+H		0.6	90 0.690			
+D+0.750Lr+0.750L+0.450W+H		0.6	90 0.690			
+D+0.750L+0.750S+0.450W+H		1.3	36 1.336			
+D+0.750L+0.750S+0.5250E+H		1.3	36 1.336			
+0.60D+0.60W+0.60H		0.4	14 0.414			
+0.60D+0.70E+0.60H		0.4	14 0.414			
D Only		0.6	90 0.690			
Lr Only						
L Only						
S Only		0.8	62 0.862			
W Only						
E Only						
H Only						

Lic. # : KW-06010783

Description : 6x6 Post

Code References

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

	ation							
Analysis Method :Allowable Stress DesignEnd FixitiesTop & Bottom PinnedOverall Column Height		ign 9.0 ft	Wa Wa Wa	ood Section Name ood Grading/Manuf. ood Member Type	6x6 Grade Sawn	d Lumber		
(Used for Wood Species Wood Grade Fb + Fb - Fc - PrII Fc - Perp	non-slender calo Douglas Fir No.1 1,200.0 psi 1,200.0 psi 1,000.0 psi 625.0 psi	culations) - Larch Fv Ft Density	170.0 psi 825.0 psi 31.20 pci	Ex. Ex:	act Width act Depth Area Ix Iy	5.50 in 5.50 in 30.250 in ² 76.255 in ⁴	Allow Stress Modification Factors Cf or Cv for Bending Cf or Cv for Compression Cf or Cv for Tension Cm : Wet Use Factor Ct : Temperature Factor	1.0 1.0 1.0 1.0 1.0
E : Modulus of Ela	asticity Basic Minimum	x-x Bending 1,600.0 580.0	y-y Bending 1,600.0 580.0	Axial 1,600.0 ksi Bra	ace condition for de X-X (width) axis : Y-Y (depth) axis :	flection (bucklin Unbraced : Unbraced	Kf : Built-up columns Use Cr : Repetitive ? ng) along columns : Length for X-X Axis buckling = 9.0 ft, K Length for X-X Axis buckling = 9.0 ft, K	1.0 NDS 15.3 No = 1.0 = 1.0

Applied Loads

Column self weight included : 58.988 lbs * Dead Load Factor AXIAL LOADS . . . Axial Load at 9.0 ft, Xecc = 0.50 in, Yecc = 0.50 in, D = 1.250, S = 1.70 k

DESIGN SUMMARY

Bending & Shear Check Results

PASS Max. Axial+Bending Stress Ratio = Load Combination Governing NDS Forumla	0.1209 : 1 +D+S+H Comp Only, fc/Fc'	Maximum SERVICE Lateral Load ReactionsTop along Y-Y0.01366 kBottom along Y-Y0.01366 kTop along X-X0.01366 kBottom along X-X0.01366 k
At maximum location values are Applied Axial Applied Mx Applied My Ec : Allowable	0.0 π 3.009 k 0.0 k-ft 0.0 k-ft 822 75 nsi	Maximum SERVICE Load Lateral Deflections Along Y-Y -0.009124 in at 5.255 ft above base for load combination : +D+S+H Along X-X -0.009124 in at 5.255 ft above base for load combination : +D+S+H
PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base Applied Design Shear Allowable Shear	0.003464 : 1 +D+S+H 9.0 ft 0.6772 psi 195.50 psi	Other Factors used to calculate allowable stresses <u>Bending</u> <u>Compression</u> <u>Tension</u>

Load Combination Results

	•	•	Maximum Axial	+ Bending	<u>Stress Ratios</u>	Maximum Shear Ratios				
Load Combination	С _D	С _Р	Stress Ratio	Status	Location	Stress Ratio	Status	Location		
+D+H	0.900	0.788	0.06102	PASS	0.0 ft	0.001876	PASS	9.0 ft		
+D+L+H	1.000	0.759	0.05702	PASS	0.0 ft	0.001688	PASS	9.0 ft		
+D+Lr+H	1.250	0.687	0.05038	PASS	0.0 ft	0.001350	PASS	9.0 ft		
+D+S+H	1.150	0.715	0.1209	PASS	0.0 ft	0.003464	PASS	9.0 ft		
+D+0.750Lr+0.750L+H	1.250	0.687	0.05038	PASS	0.0 ft	0.001350	PASS	9.0 ft		
+D+0.750L+0.750S+H	1.150	0.715	0.1038	PASS	0.0 ft	0.002965	PASS	9.0 ft		
+D+0.60W+H	1.600	0.596	0.04534	PASS	0.0 ft	0.001055	PASS	9.0 ft		
+D+0.70E+H	1.600	0.596	0.04534	PASS	0.0 ft	0.001055	PASS	9.0 ft		
+D+0.750Lr+0.750L+0.450W+H	1.600	0.596	0.04534	PASS	0.0 ft	0.001055	PASS	9.0 ft		
+D+0.750L+0.750S+0.450W+H	1.600	0.596	0.08951	PASS	0.0 ft	0.002131	PASS	9.0 ft		
+D+0.750L+0.750S+0.5250E+H	1.600	0.596	0.08951	PASS	0.0 ft	0.002131	PASS	9.0 ft		
+0.60D+0.60W+0.60H	1.600	0.596	0.02721	PASS	0.0 ft	0.000633	PASS	9.0 ft		

ita Elementary School Structural Evaluation\Calcs\Gravity\2018-09-27_WRK18111.00 - Gravity Framing - V1.0.ec6

Service loads entered. Load Factors will be applied for calculations.

Project ID:

ENERCALC, INC. 1983-2017, Build:10.17.12.10, Ver:10.17.12.10 Licensee : WRK Engineers

Printed: 28 SEP 2018, 9:40AM

Lic. # : KW-06010783

Description : 6x6 Post

Load Combination Results

Load Combination	C _D	С _Р		Maximum Stress R	<u>Axial + Ber</u> atio Sta	iding Stress Ratios atus Location	Stre	<u>Maxim</u> ss Ratio	ium Sh St	<u>near Ratio</u> atus Lo	<u>s</u> ocation
+0.60D+0.70E+0.60H	1.600	0.596		0.027	21 PAS	SS 0.0 ft	0.00	0633	P	ASS	9.0 ft
Maximum Reactions							Note: C	Only non-	zero r	eactions	are listed.
	X-X Axis R	eaction	k	Y-Y Axis	Reaction	Axial Reaction	My - End M	oments	k-ft	Mx - End	I Moments
Load Combination	@ Base	@ Top		@ Base	@ Top	@ Base	@ Base	@ Top		@ Base	@ Top
+D+H	-0.006	0.006		-0.006	0.006	1.309					
+D+L+H	-0.006	0.006		-0.006	0.006	1.309					
+D+Lr+H	-0.006	0.006		-0.006	0.006	1.309					
+D+S+H	-0.014	0.014		-0.014	0.014	3.009					
+D+0.750Lr+0.750L+H	-0.006	0.006		-0.006	0.006	1.309					
+D+0.750L+0.750S+H	-0.012	0.012		-0.012	0.012	2.584					
+D+0.60W+H	-0.006	0.006		-0.006	0.006	1.309					
+D+0.70E+H	-0.006	0.006		-0.006	0.006	1.309					
+D+0.750Lr+0.750L+0.450W+H	-0.006	0.006		-0.006	0.006	1.309					
+D+0.750L+0.750S+0.450W+H	-0.012	0.012		-0.012	0.012	2.584					
+D+0.750L+0.750S+0.5250E+H	-0.012	0.012		-0.012	0.012	2.584					
+0.60D+0.60W+0.60H	-0.003	0.003		-0.003	0.003	0.785					
+0.60D+0.70E+0.60H	-0.003	0.003		-0.003	0.003	0.785					
D Only	-0.006	0.006		-0.006	0.006	1.309					
Lr Only											
L Only											
S Only	-0.008	0.008		-0.008	0.008	1.700					
W Only											
E Only											
H Only											

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance	
+D+H	-0.0039 in	5.255 ft	-0.004 in	5.255 ft	
+D+L+H	-0.0039 in	5.255 ft	-0.004 in	5.255 ft	
+D+Lr+H	-0.0039 in	5.255 ft	-0.004 in	5.255 ft	
+D+S+H	-0.0091 in	5.255 ft	-0.009 in	5.255 ft	
+D+0.750Lr+0.750L+H	-0.0039 in	5.255 ft	-0.004 in	5.255 ft	
+D+0.750L+0.750S+H	-0.0078 in	5.255 ft	-0.008 in	5.255 ft	
+D+0.60W+H	-0.0039 in	5.255 ft	-0.004 in	5.255 ft	
+D+0.70E+H	-0.0039 in	5.255 ft	-0.004 in	5.255 ft	
+D+0.750Lr+0.750L+0.450W+H	-0.0039 in	5.255 ft	-0.004 in	5.255 ft	
+D+0.750L+0.750S+0.450W+H	-0.0078 in	5.255 ft	-0.008 in	5.255 ft	
+D+0.750L+0.750S+0.5250E+H	-0.0078 in	5.255 ft	-0.008 in	5.255 ft	
+0.60D+0.60W+0.60H	-0.0023 in	5.255 ft	-0.002 in	5.255 ft	
+0.60D+0.70E+0.60H	-0.0023 in	5.255 ft	-0.002 in	5.255 ft	
D Only	-0.0039 in	5.255 ft	-0.004 in	5.255 ft	
Lr Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
L Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
S Only	-0.0053 in	5.255 ft	-0.005 in	5.255 ft	
W Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
E Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
H Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	

Project ID:

Printed: 28 SEP 2018, 9:40AM Ita Elementary School Structural Evaluation\Calcs\Gravity\2018-09-27_WRK18111.00 - Gravity Framing - V1.0.ec6 ENERCALC, INC. 1983-2017, Build:10.17.12.10, Ver:10.17.12.10 Licensee : WRK Engineers

Lic. # : KW-06010783

Description : 4x6 post

Code References

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

Ucheral morma							
Analysis Method : End Fixities Overall Column H	Allowable Top & Bo eight	e Stress Des ottom Pinned	ign 10 ft	Wood Section Name Wood Grading/Manuf. Wood Member Type	4x6 Graded Sawn	Lumber	
(Used for r Wood Species Wood Grade Fb + Fb - Fc - PrII	Douglas Fir Select struct 1500 psi 1500 psi 1700 psi	culations) - Larch tural Fv Ft Density	180 psi 1000 psi 31.2 pcf	Exact Width Exact Depth Area Ix Iy	3.50 in A 5.50 in 19.250 in ² 48.526 in ⁴ 19.651 in ⁴	Ilow Stress Modification Factor Cf or Cv for Bending Cf or Cv for Compression Cf or Cv for Tension Cm : Wet Use Factor Ct : Temperature Factor	ors 1.30 1.10 1.30 1.0 1.0
E : Modulus of Ela	625 psi isticity Basic Minimum	x-x Bending 1900 690	y-y Bending 1900 690	Axial 1900 ksi Brace condition for de X-X (width) axis Y-Y (depth) axis	flection (buckling : Unbraced Le : Unbraced Le	Cfu : Flat Use Factor Kf : Built-up columns Use Cr : Repetitive ? along columns : ength for X-X Axis buckling = 10 for ength for X-X Axis buckling = 10 for	1.0 1.0 NDS 15.3.2 No ft, K = 1.0 ft, K = 1.0

Applied Loads

Column self weight included : 41.708 lbs * Dead Load Factor AXIAL LOADS . . Axial Load at 10.0 ft, Xecc = 0.50 in, Yecc = 0.50 in, D = 2.60, S = 3.250 k

DESIGN SUMMARY

Bending & Shear Check Results

	J						
PASS	Max. Axial+Bending Stress Ratio =	0.9583 : 1	Maximum SER	VICE Lateral Load I	Reactions		
	Load Combination	+D+S+H	Top along Y-Y	0.02438 k	Bottom along Y-Y	0.02	438 k
	Governing NDS Forumlanp + Mxx + My	/, NDS Eq. 3.9-	Top along X-X	0.02438 k	Bottom along X-X	0.02	438 k
	Location of max.above base	9.933 ft	Maximum SERVIC	E Load Lateral Deflection	ons		
	At maximum location values are		Along Y-Y	-0.02956 in at	5 830 ft al	hove hase	
	Applied Axial	5.892 k	for load	combination : +D+S+H	0.000 11 11		
	Applied Mx Applied My	-0.2421 κ-π -0.2421 k-ft	Along X-X	-0.0730 in at	5.839 ft al	bove base	
	Fc : Allowable	457.741 psi	for load	combination : +D+S+H			
			Other Factors use	ed to calculate allowable	e stresses		
PASS	Maximum Shear Stress Ratio =	0.009176 : 1			Bending Com	pression	Tens
	Load Combination	+D+S+H					
	Location of max.above base	10.0 ft					
	Applied Design Shear	1.899 psi					
	Allowable Shear	207.0 psi					

Load Combination Results

		•	Maximum Axial	+ Bending	Stress Ratios	<u>Maximu</u>	Maximum Shear Ratios			
Load Combination	С _D	СР	Stress Ratio	Status	Location	Stress Ratio	Status	Location		
+D+H	0.900	0.267	0.3052	PASS	0.0 ft	0.005211	PASS	10.0 ft		
+D+L+H	1.000	0.242	0.3026	PASS	0.0 ft	0.004690	PASS	10.0 ft		
+D+Lr+H	1.250	0.197	0.2984	PASS	0.0 ft	0.003752	PASS	10.0 ft		
+D+S+H	1.150	0.213	0.9583	PASS	9.933 ft	0.009176	PASS	10.0 ft		
+D+0.750Lr+0.750L+H	1.250	0.197	0.2984	PASS	0.0 ft	0.003752	PASS	10.0 ft		
+D+0.750L+0.750S+H	1.150	0.213	0.7001	PASS	9.933 ft	0.007901	PASS	10.0 ft		
+D+0.60W+H	1.600	0.156	0.2949	PASS	0.0 ft	0.002931	PASS	10.0 ft		
+D+0.70E+H	1.600	0.156	0.2949	PASS	0.0 ft	0.002931	PASS	10.0 ft		
+D+0.750Lr+0.750L+0.450W+H	1.600	0.156	0.2949	PASS	0.0 ft	0.002931	PASS	10.0 ft		
+D+0.750L+0.750S+0.450W+H	1.600	0.156	0.5865	PASS	9.933 ft	0.005679	PASS	10.0 ft		
+D+0.750L+0.750S+0.5250E+H	1.600	0.156	0.5865	PASS	9.933 ft	0.005679	PASS	10.0 ft		
+0.60D+0.60W+0.60H	1.600	0.156	0.1769	PASS	0.0 ft	0.001759	PASS	10.0 ft		

ita Elementary School Structural Evaluation\Calcs\Gravity\2018-09-27_WRK18111.00 - Gravity Framing - V1.0.ec6

Service loads entered. Load Factors will be applied for calculations.

Project ID:

ENERCALC, INC. 1983-2017, Build:10.17.12.10, Ver:10.17.12.10 Licensee : WRK Engineers

Printed: 28 SEP 2018, 11:14AM

Tension

Lic. # : KW-06010783

Description : 4x6 post

Load Combination Results

Load Combination	C _D	С _Р		Maximum Stress R	<u>Axial + Ben</u> atio Sta	ding Stress Ratios Itus Location	Stre	Maxim ss Ratio	ium Sh St	near Ratio atus L	<u>s</u> ocation
+0.60D+0.70E+0.60H	1.600	0.156		0.17	69 PAS	S 0.0 ft	0.00	1759	P	ASS	10.0 ft
Maximum Reactions							Note: C	nly non-	zero r	eactions	are listed.
	X-X Axis R	eaction	k	Y-Y Axis	Reaction	Axial Reaction	My - End M	oments	k-ft	Mx - En	d Moments
Load Combination	@ Base	@ Top		@ Base	@ Top	@ Base	@ Base	@ Top		@ Base	@ Top
+D+H	-0.011	0.011		-0.011	0.011	2.642					
+D+L+H	-0.011	0.011		-0.011	0.011	2.642					
+D+Lr+H	-0.011	0.011		-0.011	0.011	2.642					
+D+S+H	-0.024	0.024		-0.024	0.024	5.892					
+D+0.750Lr+0.750L+H	-0.011	0.011		-0.011	0.011	2.642					
+D+0.750L+0.750S+H	-0.021	0.021		-0.021	0.021	5.079					
+D+0.60W+H	-0.011	0.011		-0.011	0.011	2.642					
+D+0.70E+H	-0.011	0.011		-0.011	0.011	2.642					
+D+0.750Lr+0.750L+0.450W+H	-0.011	0.011		-0.011	0.011	2.642					
+D+0.750L+0.750S+0.450W+H	-0.021	0.021		-0.021	0.021	5.079					
+D+0.750L+0.750S+0.5250E+H	-0.021	0.021		-0.021	0.021	5.079					
+0.60D+0.60W+0.60H	-0.007	0.007		-0.007	0.007	1.585					
+0.60D+0.70E+0.60H	-0.007	0.007		-0.007	0.007	1.585					
D Only	-0.011	0.011		-0.011	0.011	2.642					
Lr Only											
L Only											
S Only	-0.014	0.014		-0.014	0.014	3.250					
W Only											
E Only											
H Only											

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance	
+D+H	-0.0324 in	5.839 ft	-0.013 in	5.839 ft	
+D+L+H	-0.0324 in	5.839 ft	-0.013 in	5.839 ft	
+D+Lr+H	-0.0324 in	5.839 ft	-0.013 in	5.839 ft	
+D+S+H	-0.0730 in	5.839 ft	-0.030 in	5.839 ft	
+D+0.750Lr+0.750L+H	-0.0324 in	5.839 ft	-0.013 in	5.839 ft	
+D+0.750L+0.750S+H	-0.0629 in	5.839 ft	-0.025 in	5.839 ft	
+D+0.60W+H	-0.0324 in	5.839 ft	-0.013 in	5.839 ft	
+D+0.70E+H	-0.0324 in	5.839 ft	-0.013 in	5.839 ft	
+D+0.750Lr+0.750L+0.450W+H	-0.0324 in	5.839 ft	-0.013 in	5.839 ft	
+D+0.750L+0.750S+0.450W+H	-0.0629 in	5.839 ft	-0.025 in	5.839 ft	
+D+0.750L+0.750S+0.5250E+H	-0.0629 in	5.839 ft	-0.025 in	5.839 ft	
+0.60D+0.60W+0.60H	-0.0195 in	5.839 ft	-0.008 in	5.839 ft	
+0.60D+0.70E+0.60H	-0.0195 in	5.839 ft	-0.008 in	5.839 ft	
D Only	-0.0324 in	5.839 ft	-0.013 in	5.839 ft	
Lr Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
L Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
S Only	-0.0406 in	5.839 ft	-0.016 in	5.839 ft	
W Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
E Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
H Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	

C32

Project ID:

Printed: 28 SEP 2018, 11:14AM Ita Elementary School Structural Evaluation\Calcs\Gravity\2018-09-27_WRK18111.00 - Gravity Framing - V1.0.ec6 ENERCALC, INC. 1983-2017, Build:10.17.12.10, Ver:10.17.12.10 Licensee : WRK Engineers

Title Block "selection. Title Block Line 6			P	rinted: 28 SEP 2018, 11:05AM
Wood Beam	ita Elementary School Structural	Evaluation\Calcs\Gravity\	2018-09-27_WRK18111.00 - G	ravity Framing - V1.0.ec6
Lic. # : KW-06010783 Description : 2x6 at 16"oc		LIVEINO	License	e : WRK Engineers
CODE REFERENCES				
Calculations per NDS 2015, IBC 2015, CBC 2016, ASC Load Combination Set : ASCE 7-10	CE 7-10			
Material Properties				
Analysis Method : Allowable Stress Design Load Combination ASCE 7-10	Fb + Fb - Fc - PrII Fc - Perp	1,500.0 psi 1,500.0 psi 1,700.0 psi 625.0 psi	E : Modulus of Elasti Ebend- xx Eminbend - xx	city 1,900.0ksi 690.0ksi
Wood Grade : Select structural Beam Bracing : Beam is Fully Braced against lateral-t	Fv Ft orsional buckling	180.0 psi 1,000.0 psi	Density	31.20pcf
√	D(0.01995) S(0.069958)			
	2x6			
4	Span = 9.50 ft			

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loads Uniform Load : D = 0.0150, S = 0.05260 ksf, Tributary Width = 1.330 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable	= = =	0.732 1 Ma 2x6 1,641.43psi 2,242.50psi	ximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable	= = =	0.346 : 1 2x6 71.68 psi 207.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S+H 4.750ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S+H 9.049 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	ction n	0.326 in Ratio = 0.000 in Ratio = 0.428 in Ratio = 0.000 in Ratio =	349 >=240 0 <240 266 >=180 0 <180		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stres	s Ratios								Mor	nent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL_	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.222	0.105	0.90	1.300	1.00	1.00	1.00	1.00	1.00	0.25	389.12	1755.00	0.09	16.99	162.00
+D+L+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.200	0.094	1.00	1.300	1.00	1.00	1.00	1.00	1.00	0.25	389.12	1950.00	0.09	16.99	180.00
+D+Lr+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.160	0.076	1.25	1.300	1.00	1.00	1.00	1.00	1.00	0.25	389.12	2437.50	0.09	16.99	225.00
+D+S+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.732	0.346	1.15	1.300	1.00	1.00	1.00	1.00	1.00	1.03	1,641.43	2242.50	0.39	71.68	207.00
+D+0.750Lr+0.750L+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Project ID:

ita Elementary School Structural Evaluation/Calcs/Gra	vity\2018-09-2
ENE	RCALC, INC.

Printed: 28 SEP 2018, 11:05AM 27_WRK18111.00 - Gravity Framing - V1.0.ec6 1983-2017, Build:10.17.12.10, Ver:10.17.12.10 Licensee : WRK Engineers

Lic. # : KW-06010783 Description : 2x6 at 16"oc

Wood Beam

Load Combination		Max Stress	s Ratios								Mor	nent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Cm	C t	c _L _	М	fb	F'b	V	fv	F'v
Length = 9.50 ft	1	0.160	0.076	1.25	1.300	1.00	1.00	1.00	1.00	1.00	0.25	389.12	2437.50	0.09	16.99	225.00
+D+0.750L+0.750S+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.592	0.280	1.15	1.300	1.00	1.00	1.00	1.00	1.00	0.84	1,328.35	2242.50	0.32	58.01	207.00
+D+0.60W+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.125	0.059	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.25	389.12	3120.00	0.09	16.99	288.00
+D+0.70E+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.125	0.059	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.25	389.12	3120.00	0.09	16.99	288.00
+D+0.750Lr+0.750L+0.4	450W+H				1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.125	0.059	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.25	389.12	3120.00	0.09	16.99	288.00
+D+0.750L+0.750S+0.4	150W+H				1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.426	0.201	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.84	1,328.35	3120.00	0.32	58.01	288.00
+D+0.750L+0.750S+0.5	5250E+H				1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.426	0.201	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.84	1,328.35	3120.00	0.32	58.01	288.00
+0.60D+0.60W+0.60H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.075	0.035	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.15	233.47	3120.00	0.06	10.20	288.00
+0.60D+0.70E+0.60H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.50 ft	1	0.075	0.035	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.15	233.47	3120.00	0.06	10.20	288.00
Overall Maxin	num De	eflectio	ns													
Load Combination		с С	nan	Max "	' Dofl	Location	in Snan		and Co	mhinatio	'n		Max "	"Dofl I	ocation in	Snan

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+S+H	1	0.4278	4.785		0.0000	0.000
Vertical Reactions			Suppo	ort notation : Far left is #1	Values in KIPS	
Load Combination		Support	1 Support 2			
Overall MAXimum		0.43	0.436			
Overall MINimum		0.33	0.332			
+D+H		0.10	0.103			
+D+L+H		0.10	0.103			
+D+Lr+H		0.10	0.103			
+D+S+H		0.43	0.436			
+D+0.750Lr+0.750L+H		0.10	0.103			
+D+0.750L+0.750S+H		0.35	0.352			
+D+0.60W+H		0.10	0.103			
+D+0.70E+H		0.10	0.103			
+D+0.750Lr+0.750L+0.450W+H		0.10	0.103			
+D+0.750L+0.750S+0.450W+H		0.35	0.352			
+D+0.750L+0.750S+0.5250E+H		0.35	0.352			
+0.60D+0.60W+0.60H		0.06	0.062			
+0.60D+0.70E+0.60H		0.06	0.062			
D Only		0.10	0.103			
Lr Only						
L Only						
S Only		0.33	0.332			
W Only						
E Only						
H Only						

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6	Project Title: Engineer: Project Descr:	Proje	ct ID:	
Wood Beam	ita Elementary School Structural Evalu	ation/Calcs/Gravity/	2018-09-27_WRK18111.00 - Gravity	Framing - V1.0.ec6
Lic. # : KW-06010783		ENERCA	Licensee : \	WRK Engineers
Description : 2x8 at 16"oc				
CODE REFERENCES				
Calculations per NDS 2015, IBC 2015, CBC 2016, A Load Combination Set : ASCE 7-10	SCE 7-10			
Material Properties				
Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : Douglas Fir - Larch	Fb + Fb - Fc - Prll Fc - Perp	1000 psi 1000 psi 1500 psi 625 psi	E : Modulus of Elasticity Ebend- xx Eminbend - xx	1700 ksi 620 ksi
Wood Grade : No.1 Beam Bracing : Beam is Fully Braced against latera	Ft Ft I-torsional buckling	675 psi	Density	31.2 pcf
\$(0.05852) \$\vee \vee \vee \vee \vee \vee \vee \vee	[∛] D(0.01995) S(0.03325) ∲		\$	
	2x8			
•	Span = 15.250 ft			
				·

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loads Uniform Load : D = 0.0150, S = 0.0250 ksf, Tributary Width = 1.330 ft

Uniform Load : S = 0.0440 ksf, Extent = 0.0 -->> 6.0 ft, Tributary Width = 1.330 ft, (Drifted Snow)

DESIGN SUMMARY					Design N.G.
Maximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable	= = _	1.446 1 N 2x8 1,995.02psi 1,380.00psi	laximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable	=	0.428 : 1 2x8 88.58 psi 207 00 psi
Load Combination Location of maximum on span Span # where maximum occurs	=	+D+S+H 6.401ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	=	+D+S+H 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	ction n	0.799 in Ratio = 0.000 in Ratio = 1.136 in Ratio = 0.000 in Ratio =	= 228 <240 = 0 <240 = 161 <180 = 0 <180		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stress Ratios									Mom	Shear Values				
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL _	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.548	0.134	0.90	1.200	1.00	1.00	1.00	1.00	1.00	0.65	592.16	1080.00	0.16	21.75	162.00
+D+L+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.493	0.121	1.00	1.200	1.00	1.00	1.00	1.00	1.00	0.65	592.16	1200.00	0.16	21.75	180.00
+D+Lr+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.395	0.097	1.25	1.200	1.00	1.00	1.00	1.00	1.00	0.65	592.16	1500.00	0.16	21.75	225.00

Project ID:

	ita Elemen

Printed: 4 OCT 2018, 1:36PM ntary School Structural Evaluation\Calcs\Gravity\2018-09-27_WRK18111.00 - Gravity Framing - V1.0.ec6 ENERCALC, INC. 1983-2017, Build:10.17.12.10, Ver:10.17.12.10 Licensee : WRK Engineers

Lic. # : KW-06010783 Description : 2x8 at 16"oc

Wood Beam

Load Combination		Max Stres	s Ratios								Mor	nent Values			Shear Va	alues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	с _г _	М	fb	F'b	V	fv	F'v
+D+S+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	1.446	0.428	1.15	1.200	1.00	1.00	1.00	1.00	1.00	2.18	1,995.02	1380.00	0.64	88.58	207.00
+D+0.750Lr+0.750L+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.395	0.097	1.25	1.200	1.00	1.00	1.00	1.00	1.00	0.65	592.16	1500.00	0.16	21.75	225.00
+D+0.750L+0.750S+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	1.189	0.347	1.15	1.200	1.00	1.00	1.00	1.00	1.00	1.80	1,640.83	1380.00	0.52	71.87	207.00
+D+0.60W+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.308	0.076	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.65	592.16	1920.00	0.16	21.75	288.00
+D+0.70E+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.308	0.076	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.65	592.16	1920.00	0.16	21.75	288.00
+D+0.750Lr+0.750L+0.4	150W+H				1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.308	0.076	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.65	592.16	1920.00	0.16	21.75	288.00
+D+0.750L+0.750S+0.4	50W+H				1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.855	0.250	1.60	1.200	1.00	1.00	1.00	1.00	1.00	1.80	1,640.83	1920.00	0.52	71.87	288.00
+D+0.750L+0.750S+0.5	250E+H				1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.855	0.250	1.60	1.200	1.00	1.00	1.00	1.00	1.00	1.80	1,640.83	1920.00	0.52	71.87	288.00
+0.60D+0.60W+0.60H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.185	0.045	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.39	355.30	1920.00	0.09	13.05	288.00
+0.60D+0.70E+0.60H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.185	0.045	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.39	355.30	1920.00	0.09	13.05	288.00
Overall Maxim	num De	eflectio	ns													
Load Combination		S	Span	Max. "-'	' Defl	Location	n in Spar		Load Co	mbinatio	n		Max. "+"	Defl I	Location ir	n Span
+D+S+H			1	1.1	1359		7.458						0.0	000	0.	000
Vertical Reactions			Support notation : Far left is #1						Values in K	IPS						
Load Combination					Suppor	t1 Su	pport 2									
Ouerell MAVimum					0 -	104	0 402									

Load Combination	Support 1	Support 2	
Overall MAXimum	0.706	0.493	
Overall MINimum	0.536	0.323	
+D+H	0.170	0.170	
+D+L+H	0.170	0.170	
+D+Lr+H	0.170	0.170	
+D+S+H	0.706	0.493	
+D+0.750Lr+0.750L+H	0.170	0.170	
+D+0.750L+0.750S+H	0.572	0.412	
+D+0.60W+H	0.170	0.170	
+D+0.70E+H	0.170	0.170	
+D+0.750Lr+0.750L+0.450W+H	0.170	0.170	
+D+0.750L+0.750S+0.450W+H	0.572	0.412	
+D+0.750L+0.750S+0.5250E+H	0.572	0.412	
+0.60D+0.60W+0.60H	0.102	0.102	
+0.60D+0.70E+0.60H	0.102	0.102	
D Only	0.170	0.170	
Lr Only			
L Only			
S Only	0.536	0.323	
W Only			

- E Only H Only

Title Block" selection.				
Wood Beam	ita Elementary School Structural Eva	aluation\Calcs\Gravity\	Printed: 2018-09-27_WRK18111.00 - Gravity J.C. INC 1983-2017 Build:10.17.12	4 OCT 2018, 1:36PM Framing - V1.0.ec6 10 Ver:10 17 12 10
Lic. # : KW-06010783		ENERG	Licensee : \	VRK Engineers
Description : 2x8 at 16"oc W/ SIStered 2x8				
CODE REFERENCES				
Calculations per NDS 2015, IBC 2015, CBC 2016, A Load Combination Set : ASCE 7-10	ASCE 7-10			
Material Properties				
Analysis Method : Allowable Stress Design Load Combination ASCE 7-10	Fb + Fb - Fc - Prll	900 psi 900 psi 1350 psi	<i>E : Modulus of Elasticity</i> Ebend- xx Eminbend - xx	1600ksi 580ksi
Wood Species : Douglas Fir - Larch Wood Grade : No.2	Fc - Perp Fv Ft	625 psi 180 psi 575 psi	Density	31.2pcf
Beam Bracing : Beam is Fully Braced against latera	al-torsional buckling			
S(0.05852)	[™] D(0.01995) S(0.03325)		\$	
	2-2x8			
←	Span = 15.250 ft			
Applied Loads	Service lo	ads entered. Lo	ad Factors will be applied	for calculations.

Beam self weight calculated and added to loads Uniform Load : D = 0.0150, S = 0.0250 ksf, Tributary Width = 1.330 ft

Uniform Load : S = 0.0440 ksf, Extent = 0.0 -->> 6.0 ft, Tributary Width = 1.330 ft, (Drifted Snow)

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable Load Combination	= = =	0.82& 1 Ma 2-2x8 1,027.98psi 1,242.00psi +D+S+H	aximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination	= = =	0.219 : 1 2-2x8 45.44 psi 207.00 psi +D+S+H
Location of maximum on span Span # where maximum occurs	=	6.456ft Span # 1	Location of maximum on span Span # where maximum occurs	=	0.000 ft Span # 1
Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	ction on	0.425 in Ratio = 0.000 in Ratio = 0.622 in Ratio = 0.000 in Ratio =	431 >=240 0 <240 294 >=180 0 <180		

Maximum Forces & Stresses for Load Combinations

Load Combination Max Stress Ratios								Moment Values						Shear Values		
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL _	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.337	0.074	0.90	1.200	1.00	1.00	1.00	1.00	1.00	0.72	327.36	972.00	0.17	12.02	162.00
+D+L+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.303	0.067	1.00	1.200	1.00	1.00	1.00	1.00	1.00	0.72	327.36	1080.00	0.17	12.02	180.00
+D+Lr+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.242	0.053	1.25	1.200	1.00	1.00	1.00	1.00	1.00	0.72	327.36	1350.00	0.17	12.02	225.00

Project ID:

am		
2111		

Wood Bea Lic. # : KW-06010783

Description : 2x8 at 16"oc

Load Combination		Max Stres	s Ratios								Mon	nent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL_	М	fb	F'b	V	fv	F'v
+D+S+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.828	0.219	1.15	1.200	1.00	1.00	1.00	1.00	1.00	2.25	1,027.98	1242.00	0.66	45.44	207.00
+D+0.750Lr+0.750L+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.242	0.053	1.25	1.200	1.00	1.00	1.00	1.00	1.00	0.72	327.36	1350.00	0.17	12.02	225.00
+D+0.750L+0.750S+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.685	0.179	1.15	1.200	1.00	1.00	1.00	1.00	1.00	1.86	851.08	1242.00	0.54	37.08	207.00
+D+0.60W+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.189	0.042	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.72	327.36	1728.00	0.17	12.02	288.00
+D+0.70E+H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.189	0.042	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.72	327.36	1728.00	0.17	12.02	288.00
+D+0.750Lr+0.750L+0.4	50W+H				1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.189	0.042	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.72	327.36	1728.00	0.17	12.02	288.00
+D+0.750L+0.750S+0.4	50W+H				1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.493	0.129	1.60	1.200	1.00	1.00	1.00	1.00	1.00	1.86	851.08	1728.00	0.54	37.08	288.00
+D+0.750L+0.750S+0.52	250E+H				1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.493	0.129	1.60	1.200	1.00	1.00	1.00	1.00	1.00	1.86	851.08	1728.00	0.54	37.08	288.00
+0.60D+0.60W+0.60H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.114	0.025	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.43	196.41	1728.00	0.10	7.21	288.00
+0.60D+0.70E+0.60H					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 15.250 ft	1	0.114	0.025	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.43	196.41	1728.00	0.10	7.21	288.00
Overall Maxim	ium De	eflectio	ns													
Load Combination		S	pan	Max. "-'	' Defl	Location	n in Spar	ו ו	Load Co	mbinatio	on		Max. "+	" Defl L	ocation in	Span
+D+S+H			1	0.6	5223		7.458						0.	0000	0.	000
Vertical React	ions						Sup	port not	ation : F	ar left is	#1		Values in I	KIPS		
Load Combination					Suppor	t1 Su	oport 2									
Overall MAXimum					0.7	24	0.511									
Overall MINimum					0.5	36	0.323									
+D+H					0.1	88	0.188									

	0.550	0.323
+D+H	0.188	0.188
+D+L+H	0.188	0.188
+D+Lr+H	0.188	0.188
+D+S+H	0.724	0.511
+D+0.750Lr+0.750L+H	0.188	0.188
+D+0.750L+0.750S+H	0.590	0.430
+D+0.60W+H	0.188	0.188
+D+0.70E+H	0.188	0.188
+D+0.750Lr+0.750L+0.450W+H	0.188	0.188
+D+0.750L+0.750S+0.450W+H	0.590	0.430
+D+0.750L+0.750S+0.5250E+H	0.590	0.430
+0.60D+0.60W+0.60H	0.113	0.113
+0.60D+0.70E+0.60H	0.113	0.113
D Only	0.188	0.188
Lr Only		
L Only		
S Only	0.536	0.323
W Only		

E Only H Only

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6	Project Title Engineer: Project Des	:: cr:	F	Project ID: Printed: 28 SEP 2018, 11:04AM		
Wood Beam	ita Elementary School Structural E	Evaluation/Calcs/Gravity/2	2018-09-27_WRK18111.00 - G	ravity Framing - V1.0.ec6		
Lic. # : KW-06010783		Enertor	License	e : WRK Engineers		
Description : 3x6 at 30" oc						
CODE REFERENCES						
Calculations per NDS 2015, IBC 2015, CBC 2016, AS Load Combination Set : ASCE 7-10	SCE 7-10					
Material Properties						
Analysis Method : Allowable Stress Design Load Combination ASCE 7-10	Fb + Fb - Fc - Prll Fc - Dorn	1,500.0 psi 1,500.0 psi 1,700.0 psi	E : Modulus of Elasti Ebend- xx Eminbend - xx	city 1,900.0ksi 690.0ksi		
Wood Species : Douglas Fir - Larch Wood Grade : Select structural Beam Bracing : Beam is Fully Braced against latera	Ft Ft I-torsional buckling	180.0 psi 1,000.0 psi	Density	31.20 pcf		
\$(0.069,0) \$	↓ D(0.0375) S(0.0625)	v	∀			
	3x6					
	Span = 9.250 ft					
•						

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loads Uniform Load : D = 0.0150, S = 0.0250 ksf, Tributary Width = 2.50 ft

Varying Uniform Load : S= 0.02760->0.0 ksf, Extent = 0.0 -->> 6.40 ft, Trib Width = 2.50 ft, (Snow Drift)

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable	= = =	0.565 1 M 3x6 1,267.72psi 2,242.50psi	laximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable	= = =	0.301 : 1 3x6 62.37 psi 207.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S+H 4.355ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S+H 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	ction n	0.211 in Ratio = 0.000 in Ratio = 0.313 in Ratio = 0.000 in Ratio =	525 >= 240 = 0 < 240 = 354 >= 180 = 0 < 180		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stress	s Ratios								Mom	ent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL _	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.235	0.114	0.90	1.300	1.00	1.00	1.00	1.00	1.00	0.43	412.18	1755.00	0.17	18.49	162.00
+D+L+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.211	0.103	1.00	1.300	1.00	1.00	1.00	1.00	1.00	0.43	412.18	1950.00	0.17	18.49	180.00
+D+Lr+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.169	0.082	1.25	1.300	1.00	1.00	1.00	1.00	1.00	0.43	412.18	2437.50	0.17	18.49	225.00

Project ID:

Printed: 28 SEP 2018, 11:04AM

Thildd. 20 3EF 2010, 11.04	
ita Elementary School Structural Evaluation\Calcs\Gravity\2018-09-27_WRK18111.00 - Gravity Framing - V1.0.ec	:6
ENERCALC INC 1092 2017 Puild 10 17 12 10 Voc 10 17 12 1	10

17, Build:10.17.12.10, Ver:10.17.12.10 Licensee : WRK Engineers

Lic. # : KW-06010783 Description : 3x6 at 30" oc

Wood Beam

Load Combination		Max Stres	s Ratios								Mor	ment Values			Shear Va	lues
Segment Length	Span #	Μ	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL _	М	fb	F'b	V	fv	F'v
+D+S+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.565	0.301	1.15	1.300	1.00	1.00	1.00	1.00	1.00	1.33	1,267.72	2242.50	0.57	62.37	207.00
+D+0.750Lr+0.750L+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.169	0.082	1.25	1.300	1.00	1.00	1.00	1.00	1.00	0.43	412.18	2437.50	0.17	18.49	225.00
+D+0.750L+0.750S+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.470	0.248	1.15	1.300	1.00	1.00	1.00	1.00	1.00	1.11	1,053.50	2242.50	0.47	51.40	207.00
+D+0.60W+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.132	0.064	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.43	412.18	3120.00	0.17	18.49	288.00
+D+0.70E+H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.132	0.064	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.43	412.18	3120.00	0.17	18.49	288.00
+D+0.750Lr+0.750L+0.4	50W+H				1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.132	0.064	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.43	412.18	3120.00	0.17	18.49	288.00
+D+0.750L+0.750S+0.45	50W+H				1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.338	0.178	1.60	1.300	1.00	1.00	1.00	1.00	1.00	1.11	1,053.50	3120.00	0.47	51.40	288.00
+D+0.750L+0.750S+0.52	250E+H				1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.338	0.178	1.60	1.300	1.00	1.00	1.00	1.00	1.00	1.11	1,053.50	3120.00	0.47	51.40	288.00
+0.60D+0.60W+0.60H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.079	0.039	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.26	247.31	3120.00	0.10	11.09	288.00
+0.60D+0.70E+0.60H					1.300	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 9.250 ft	1	0.079	0.039	1.60	1.300	1.00	1.00	1.00	1.00	1.00	0.26	247.31	3120.00	0.10	11.09	288.00
Overall Maxim	um De	eflectio	ns													
Load Combination		S	Span	Max. "-'	' Defl	Location	n in Spar	n l	_oad Co	mbinati	on		Max. "+"	Defl	Location ir	i Span
+D+S+H			1	0.3	3130		4.591						0.0	000	0.	000
Vertical React	ions						Sup	port not	ation : F	ar left is	s #1		Values in K	IPS		
Load Combination					Suppor	t1 Su	pport 2									
Overall MAXimum					0.6	46	0.527									
Overall MINimum					0.4	59	0.340									
+D+H					0.1	87	0.187									
+D+L+H					0.1	87	0.187									
+D+Lr+H					0.1	87	0.187									
+D+S+H					0.6	46	0.527									
+D+0.750Lr+0.750L+H	Н				0.1	87	0.187									
+D+0.750L+0.750S+H	ł				0.5	31	0.442									

0.187

0.187

0.187

0.531

0.531

0.112

0.112

0.187

0.459

0.187

0.187

0.187

0.442

0.442

0.112

0.112

0.187

0.340

W Only E Only H Only

D Only

Lr Only L Only S Only

+D+0.60W+H

+D+0.70E+H

+D+0.750Lr+0.750L+0.450W+H

+D+0.750L+0.750S+0.450W+H

+D+0.750L+0.750S+0.5250E+H

+0.60D+0.60W+0.60H

+0.60D+0.70E+0.60H

	ita Elementary School Structural			ntod 08 SEP 0018 11-/1201/
Vood Beam	,	Evaluation\Calcs\Gravity\	2018-09-27_WRK18111.00 - Gr	avity Framing - V1.0.ec6
ic. # : KW-06010783		ENERC	License	e : WRK Enginee
Description : 4x12 at 3'-3" oc				
CODE REFERENCES				
alculations per NDS 2015, IBC 2015, CBC 2016, ASC oad Combination Set : ASCE 7-10	CE 7-10			
Material Properties				
Analysis Method : Allowable Stress Design	Fb +	1,500.0 psi	E : Modulus of Elastic	zity
Load Combination ASCE 7-10	Fb -	1,500.0 psi	Ebend- xx	1,900.0ksi
Weed Creeker - Dougloo Fir I grah	FC - Pfil Fc - Pern	625 0 nsi	Emindend - XX	690.0KSI
Wood Species : Douglas Fir - Larch	Fv	180.0 psi		
	Ft	1,000.0 psi	Density	31.20 pcf
Beam Bracing : Beam is Fully Braced against lateral-t	torsional buckling			
♦	D(0.04875) S(0.08125)		\$	
0	4:40			
	4812			
	Span = 26.0 ft			
•				
Applied Loads	Service	loads entered Lo	ad Factors will be appl	ied for calculation

Beam self weight calculated and added to loads Uniform Load : D = 0.0150, S = 0.0250 ksf, Tributary Width = 3.250 ft

DESIGN SUMMARY					Design N.G.
Maximum Bending Stress Ratio Section used for this span	=	1.003 1 Ma 4x12	aximum Shear Stress Ratio Section used for this span	=	0.310 : 1 4x12
fb : Actual	=	1,902.67psi	fv : Actual	=	64.10 psi
FB : Allowable	=	1,897.50psi	Fv : Allowable	=	207.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S+H 13.000ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S+H 25.146 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	ction n	1.065 in Ratio = 0.000 in Ratio = 1.816 in Ratio = 0.000 in Ratio =	292 >=240 0 <240 171 <180 0 <180		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stres	s Ratios								Mor	nent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL_	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.530	0.164	0.90	1.100	1.00	1.00	1.00	1.00	1.00	4.84	786.74	1485.00	0.70	26.50	162.00
+D+L+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.477	0.147	1.00	1.100	1.00	1.00	1.00	1.00	1.00	4.84	786.74	1650.00	0.70	26.50	180.00
+D+Lr+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.381	0.118	1.25	1.100	1.00	1.00	1.00	1.00	1.00	4.84	786.74	2062.50	0.70	26.50	225.00
+D+S+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	1.003	0.310	1.15	1.100	1.00	1.00	1.00	1.00	1.00	11.71	1,902.67	1897.50	1.68	64.10	207.00
+D+0.750Lr+0.750L+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Wood Beam

Project ID:

Printed: 28 SEP 2018, 11:43AM

ita Elementary School Structural Evaluation\Calcs\Gravity\2018-09-27_WRK
ENERCALC, INC. 1983-20

(18111.00 - Gravity Framing - V1.0.ec6 017, Build:10.17.12.10, Ver:10.17.12.10 Licensee : WRK Engineers

Lic. # : KW-06010783 Description : 4x12 at 3'-3" oc

Load Combination		Max Stress	s Ratios								Mon	nent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	c _L _	М	fb	F'b	V	fv	F'v
Length = 26.0 ft	1	0.381	0.118	1.25	1.100	1.00	1.00	1.00	1.00	1.00	4.84	786.74	2062.50	0.70	26.50	225.00
+D+0.750L+0.750S+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.856	0.264	1.15	1.100	1.00	1.00	1.00	1.00	1.00	9.99	1,623.69	1897.50	1.44	54.70	207.00
+D+0.60W+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.298	0.092	1.60	1.100	1.00	1.00	1.00	1.00	1.00	4.84	786.74	2640.00	0.70	26.50	288.00
+D+0.70E+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.298	0.092	1.60	1.100	1.00	1.00	1.00	1.00	1.00	4.84	786.74	2640.00	0.70	26.50	288.00
+D+0.750Lr+0.750L+0.4	50W+H				1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.298	0.092	1.60	1.100	1.00	1.00	1.00	1.00	1.00	4.84	786.74	2640.00	0.70	26.50	288.00
+D+0.750L+0.750S+0.4	50W+H				1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.615	0.190	1.60	1.100	1.00	1.00	1.00	1.00	1.00	9.99	1,623.69	2640.00	1.44	54.70	288.00
+D+0.750L+0.750S+0.52	250E+H				1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.615	0.190	1.60	1.100	1.00	1.00	1.00	1.00	1.00	9.99	1,623.69	2640.00	1.44	54.70	288.00
+0.60D+0.60W+0.60H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.179	0.055	1.60	1.100	1.00	1.00	1.00	1.00	1.00	2.90	472.04	2640.00	0.42	15.90	288.00
+0.60D+0.70E+0.60H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.179	0.055	1.60	1.100	1.00	1.00	1.00	1.00	1.00	2.90	472.04	2640.00	0.42	15.90	288.00
Overall Maxim	ium De	eflectio	ns													

Load Combination	Span	Max. "-" Defl	Locatio	n in Span	Load Combination	Max. "+" Defl	Location in Span
+D+S+H	1	1.8157		13.095		0.0000	0.000
Vertical Reactions				Suppo	rt notation : Far left is #1	Values in KIPS	
Load Combination		Suppor	rt1 Su	pport 2			
Overall MAXimum		1.8	301	1.801			
Overall MINimum		1.0)56	1.056			
+D+H		0.7	745	0.745			
+D+L+H		0.7	745	0.745			
+D+Lr+H		0.7	745	0.745			
+D+S+H		1.8	301	1.801			
+D+0.750Lr+0.750L+H		0.7	745	0.745			
+D+0.750L+0.750S+H		1.5	537	1.537			
+D+0.60W+H		0.7	745	0.745			
+D+0.70E+H		0.7	745	0.745			
+D+0.750Lr+0.750L+0.450W+H		0.7	745	0.745			
+D+0.750L+0.750S+0.450W+H		1.5	537	1.537			
+D+0.750L+0.750S+0.5250E+H		1.5	537	1.537			
+0.60D+0.60W+0.60H		0.4	447	0.447			
+0.60D+0.70E+0.60H		0.4	447	0.447			
D Only		0.7	745	0.745			
Lr Only							
L Only							
S Only		1.0)56	1.056			
W Only							
E Only							
H Only							

Project ID:

itle Block i selection.			Prin	ted: 1 OCT 2018 1-36PM
Nood Beam	ita Elementary School Structural Ev	valuation\Calcs\Gravity\ ENERC/	2018-09-27_WRK18111.00 - Grav ALC, INC. 1983-2017, Build:10.17.	vity Framing - V1.0.ec6 12.10, Ver:10.17.12.10
Lic. # : KW-06010783			Licensee	: WRK Enginee
Description : 4x12 w/ sistered 2x12				
CODE REFERENCES				
Calculations per NDS 2015, IBC 2015, CBC 2016, A Load Combination Set : ASCE 7-10	ASCE 7-10			
Material Properties				
Analysis Method : Allowable Stress Design Load Combination ASCE 7-10	Fb + Fb - Fc - Prll	1000 psi 1000 psi 1500 psi	E : Modulus of Elasticit Ebend- xx Eminbend - xx	y 1700ksi 620ksi
Wood Species : Douglas Fir - Larch Wood Grade : No.1	Fc - Perp Fv Ft	625 psi 180 psi 675 psi	Density	31 2 ncf
Beam Bracing : Beam is Fully Braced against later	ral-torsional buckling		2 01011	poi
	D(0.04875) S(0.08125)			
Ý Ý	, , , , , , , , , , , , , , , , , , ,		♦	¢
	5.50 X 11.250			
•	Span = 26.0 ft			
				I
Applied Loads	Service lo	oads entered. Lo	ad Factors will be applie	d for calculatior

Beam self weight calculated and added to loads Uniform Load : D = 0.0150, S = 0.0250 ksf, Tributary Width = 3.250 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span fb : Actual	=	0.991 : 1 5.50 X 11.250 1,253.40psi	Maximum Shear Stress Ratio Section used for this span fv : Actual	=	0.204 : 1 5.50 X 11.250 42.23 psi
FB : Allowable	=	1,265.00psi	Fv : Allowable	=	207.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S+H 13.000ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S+H 25.146 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	tion n	0.757 in Ratio 0.000 in Ratio 1.337 in Ratio 0.000 in Ratio	$ \begin{array}{rcl} 0 = & 411 >= 240 \\ 0 = & 0 < 240 \\ 0 = & 233 >= 180 \\ 0 = & 0 < 180 \end{array} $		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stress	s Ratios								Mor	nent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	C ^L	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.549	0.113	0.90	1.100	1.00	1.00	1.00	1.00	1.00	5.25	543.26	990.00	0.75	18.30	162.00
+D+L+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.494	0.102	1.00	1.100	1.00	1.00	1.00	1.00	1.00	5.25	543.26	1100.00	0.75	18.30	180.00
+D+Lr+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.395	0.081	1.25	1.100	1.00	1.00	1.00	1.00	1.00	5.25	543.26	1375.00	0.75	18.30	225.00
+D+S+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.991	0.204	1.15	1.100	1.00	1.00	1.00	1.00	1.00	12.12	1,253.40	1265.00	1.74	42.23	207.00
+D+0.750Lr+0.750L+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Project ID:

Printed: 4 OCT 2018, 1:36PM ec6 2.10

Wood Boam	ita Elementary School Structural Evaluation\Calcs\Gravity\2018-09-27_WRK18111.00 - Gravity Framing - V1.0.ec6
	ENERCALC, INC. 1983-2017, Build:10.17.12.10, Ver:10.17.12.10
Lic. # : KW-06010783	Licensee : WRK Engineers

Description : 4x12 w/ sistered 2x12

Load Combination		Max Stres	s Ratios								Mor	ment Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL _	М	fb	F'b	V	fv	F'v
Length = 26.0 ft	1	0.395	0.081	1.25	1.100	1.00	1.00	1.00	1.00	1.00	5.25	543.26	1375.00	0.75	18.30	225.00
+D+0.750L+0.750S+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.850	0.175	1.15	1.100	1.00	1.00	1.00	1.00	1.00	10.40	1,075.86	1265.00	1.50	36.24	207.00
+D+0.60W+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.309	0.064	1.60	1.100	1.00	1.00	1.00	1.00	1.00	5.25	543.26	1760.00	0.75	18.30	288.00
+D+0.70E+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.309	0.064	1.60	1.100	1.00	1.00	1.00	1.00	1.00	5.25	543.26	1760.00	0.75	18.30	288.00
+D+0.750Lr+0.750L+0.4	450W+H				1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.309	0.064	1.60	1.100	1.00	1.00	1.00	1.00	1.00	5.25	543.26	1760.00	0.75	18.30	288.00
+D+0.750L+0.750S+0.4	150W+H				1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.611	0.126	1.60	1.100	1.00	1.00	1.00	1.00	1.00	10.40	1,075.86	1760.00	1.50	36.24	288.00
+D+0.750L+0.750S+0.5	5250E+H				1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.611	0.126	1.60	1.100	1.00	1.00	1.00	1.00	1.00	10.40	1,075.86	1760.00	1.50	36.24	288.00
+0.60D+0.60W+0.60H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.185	0.038	1.60	1.100	1.00	1.00	1.00	1.00	1.00	3.15	325.95	1760.00	0.45	10.98	288.00
+0.60D+0.70E+0.60H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 26.0 ft	1	0.185	0.038	1.60	1.100	1.00	1.00	1.00	1.00	1.00	3.15	325.95	1760.00	0.45	10.98	288.00
Overall Mexin		flaatia	20													

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+S+H	1	1.3369	13.095		0.0000	0.000
Vertical Reactions			Supp	ort notation : Far left is #1	Values in KIPS	
Load Combination		Suppo	rt 1 Support 2			
Overall MAXimum		1.	864 1.864			
Overall MINimum		1.	056 1.056			
+D+H		0.	808 0.808			
+D+L+H		0.	808 0.808			
+D+Lr+H		0.	808 0.808			
+D+S+H		1.	864 1.864			
+D+0.750Lr+0.750L+H		0.	808 0.808			
+D+0.750L+0.750S+H		1.	600 1.600			
+D+0.60W+H		0.	808 0.808			
+D+0.70E+H		0.	808 0.808			
+D+0.750Lr+0.750L+0.450W+H		0.	808 0.808			
+D+0.750L+0.750S+0.450W+H		1.	600 1.600			
+D+0.750L+0.750S+0.5250E+H		1.	600 1.600			
+0.60D+0.60W+0.60H		0.	485 0.485			
+0.60D+0.70E+0.60H		0.	485 0.485			
D Only		0.	808 0.808			
Lr Only						
L Only						
S Only		1.	056 1.056			
W Only						
E Only						
H Only						

II. Quonset Hut

WISGS Design Maps Summary Report

User-Specified Input Report Title City of Manzanita School Evaluation
Fri September 28, 2018 15:20:08 UTC Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-1N
(which utilizes USGS hazard data available in 2008) Site Coordinates 45.7207°N, 123.93061°W Site Soil Classification Site Class D – "Stiff Soil"

USGS-Provided Output

S_{xs,bse-1N} 0.888 g

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

Design Maps Summary Report

Design Maps Summary Report ≊USGS

FOR TIER 1 SCREENING ONLY

User-Specified Input

Report Title City of Manzanita School Evaluation Fri September 28, 2018 15:21:37 UTC

Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-2N (which utilizes USGS hazard data available in 2008) Site Coordinates 45.7207°N, 123.93061°W

Site Soil Classification Site Class D - "Stiff Soil"

USGS-Provided Output

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

C48

SUBJECT: Quonset Hut Load Takeoff

Project No. 18111.00

Date: 10/01/18

Design: KS Section:

Checked:

Page: _____of____

Quonset Hut

Material	Qty	Tributary	Units	Weight	Units	Total Weight (kips)	
Roof			-				_
Metal Deck	1	3040	sf	3	psf	9.1	
Purlins	1	3040	sf	3	psf	9.1	
Glulam Arches	1	3040	sf	4	psf	12.2	
Misc	1	3040	sf	2	psf	6.1	
<u>Canopy</u>							
Walls		1				1	
East/West Wall			_				
Wood Walls	1	252	sf	10.0	psf	2.5	
North/South Wall							
Wood Walls	1	1197	sf	10.0	psf	12.0	
		1		Total Load	3 =	<u>51.0</u>	_ kip

wr	Cengir	neers	SUBJEC	T: Base Shear - Qu	uonset Hut ita School Structural E	Evaluation	Project No. <u>18</u> Design: <u>KS</u> Checked:		ate: tion: age:	10/01/18
Base Shear										
Floor	Incr. Ht. ft.	Height ft	Elevation ft	Diaphragm Seis Weight kips	N-S Wall Seis Weight kips	E-W Wall Seis Weight kips	N-S Direction Diaphragm Seis Weight kips	E-W Direction Diaphragm Seis Weight kips		
Roof	21.00	21.00	21.00	36	12	3	48	39		

Summation:	36	12	3	48	39

Approximate Code Period :	BSE-1N	
В =	0.75	
Ct =	0.020	
T _L =	12.00	
To =	0.153	
Ts =	0.767	
Period Used to Estimate Base Shear; T =	0.196	seconds
k =	1.000	
b =	0.050	
B ₁ =	1.002	
Response Spectrum Acceleration, Sa =	0.886	

psuedo lateral force, $V = C_1 C_2 C_m S_a W =$	1.240

W

E-W Direction OUTPUT						
Total Weight kips	wihi ^k kip-ft	Cvx	Story Force (Fx) kips	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx) kips	Diaphragm Force (Fpx) kips
51	1,070	1.000	63	1.24	39	48
51	1,070	1.000	63			

psuedo lateral force, V= 63 kips

Seismic Design Parameters (site Specific):

Sxs =

Sx1 =

BSE-1N

0.888

0.681

 $\begin{array}{ccc}
Cm = & 1 \\
C_1 = & 1.4 \\
C_2 = & 1
\end{array}$

			N-S Direction	OUTPUT		
Total Weight	wihi ^k	Сvх	Story Force (Fx)	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx)	Diaphragm Force (Fpx)
kips 51	kip-ft 1,070	1.000	kips 63	1.24	kips 48	kips 60
51	1,070	1.000	63			
63	kips					

SUBJECT: Quonset Hut Load Takeoff

Project No. 18111.00

Date: 10/01/18

Design: KS Section:

Checked:

Page: _____of____

Storage

				Total Load	1 =	22.8
<u>North/South Wall</u> Wood Walls	1	576	sf	12.0	psf	6.9
<u>East/West Wall</u> Wood Walls	1	360	sf	12.0	psf	4.3
Walls						
<u>Canopy</u>						
Misc	1	960	sf	3	psf	2.9
Pre-manufactured Trusses	1	960	sf	4	psf	3.8
Particle Board	1	960	sf	2	psf	1.9
Metal Deck	1	960	sf	3	psf	2.9
Roof					1	(1000)
Material	Qty	Tributary	Units	Weight	Units	Weight (kips)
						Total

wr	Cengir	heers	SUBJECT	Base Shear - Qu City of Manzani	ionset Hut ita School Structural E	valuation	Project No. <u>181</u> Design: <u>KS</u> Checked:	11.00 Date Section Page	e: <u>10/01/18</u> n:of
Base Shear	Incr Ht	Height	Flevation	Diaphragm Seis Weight	N-S Wall Seis Weight	E-W Wall Seis Weight	N-S Direction Diaphragm Seis Weight	E-W Direction Diaphragm Seis Weight	
Roof	ft. 13.00	ft 13.00	ft 13.00	kips 12	kips 7	kips 4	kips 18	kips 16	

7

12

Summation:

Seismic Design Parameters (site Specific):

Sxs =

Sx1 =

 $\begin{array}{c}
Cm = & 1 \\
C_1 = & 1.4 \\
C_2 = & 1
\end{array}$

BSE-1N

0.888

0.681

Approximate Code Period :	BSE-1N	
В =	0.75	
Ct =	0.020	
T _L =	12.00	
To =	0.153	
Ts =	0.767	
Period Used to Estimate Base Shear; T =	0.137	seconds
k =	1.000	
b =	0.050	
B ₁ =	1.002	
Response Spectrum Acceleration, Sa =	0.829	

4

18

16

E-W Direction OUTPUT						
Total Weight kips	wihi ^k kip-ft	Cvx	Story Force (Fx) kips	$\frac{\Sigma F_i}{\Sigma w_i}$	Diaph. Seis. Weight (wpx) kips	Diaphragm Force (Fpx) kips
23	296	1.000	26	1.16	16	18
23	296	1.000	26			
26	kips					

psuedo lateral force, V= 26 kips

Total Story Weight wihi ^k Cyx Force (f	ΣF_i Diaph. Seis. Diaphragm
kips kip-ft kips	x) Σ_{W_i} Weight (wpx) Force (Fpx) kips kips
23 296 1.000 26	1.16 18 21
23 296 1.000 26	

DIAPHRAGM DESIGN - Lower Roof

East/West Loading

DIAPHRAGM DESIGN - Upper Roof

		Project No. <u>18111.00</u>	Date:
	SUBJECT: Wind Loading - Quonset Hut N/S Direction	Design: KS	Section:
W (K engineers	PROJECT: City of Manzanita School Structural Evaluation	Checked:	Page:

27 Directional Procedure, Part 1:Enclosed and Partially Enclosed Rigid Buildings. (All Heights) 27.4. MWFRS

Velocity pressure qz = .00256 Kz Kzt Kd V² (27.3-1)Roof Height h = 21 Exposure B feet Roof Pitch = 0.00 :12 Exposure coefficient K_z = Section 27.3.1, shall be determined from Table 27.3-1 Topography factor K_{zt} = 1.00 26.8.2, Figure 26.8-1 Directionality factor K_d = 0.85 26.6, Table 26.6-1 Building & Structure Risk Category = II, standard IBC T-1604.5 135 Wind Speed V = mph 39.66 K_z psf $q_z =$ Internal Pressure Coefficient (GCpi) = Table 26.11-1, for Enclosed Buildir ± 0.18 Gust effect factor G = 0.85 26.9 Pressures for MWFRS $p = qGC_p - q_i (GC_{pi})$ (27.4-1)Wall and Roof External pressure Coefficients Cp from Fig. 27.4-1 Wind Normal to Ridge (4 to 38) L/B 0.48 h/L = 21/38 = 0.55 $\theta = 0.0$ Windward wall Cp = 0.80 Windward roof C_p = Leeward wall Cp = Leeward roof Cp = -0.50 for L/B = 0.48 Side wall Cp = -0.70 or Roof $C_p = -0.94$ -0.67 -0.52 Wind Parallel to Ridge (⊥ to 80) L/B = 2.11 Windward wall Cp = 0.80 h/L = 21/80 = 0.26 Roof $C_p = -0.90$ Leeward wall C_p = -0.29 for L/B = 2.11 -0.90 -0.50 Side wall C_p = -0.70 for dist 0 11 21

		Project No. 18111.00	Date:
MIRIA	SUBJECT: QUONSET HUT-WIND LOND.	Design: KS	Section:
WIK engineers	PROJECT: City of Manzanita School Structural Evaluation	Checked:	Page:
ASCE 7-10 ARCHED ROOF:			
r= 21 #38 == 0,	55		
FIGURE 27.4-3	3 Cp = 1.4r = 0.77		
$p = q_G C_p - q_i (G C_{p_i})$	(27,4-1)		
q= 0,00 256 Kz	KzeKJV ?		
=0.00256 (0.1	2)(1.0)(0.85)(135)= 24.6 PSf	2	
GCpi = ±0.18			
G=0.85 P= 24,6psf (0	0.85* 0.77+0.18) = 20.5 psf		
$V_{E-W} = (20.5PSF)(2)$	FT/2) (80 FT) = 17.2 KIPS		
=) WIND SHEAD	2 CC SEISMIC SHEAR. =) SE	ISMIC CONTR	OLS
$V_{N-S} = (23.35 \text{ BF})(21)$	FT/2) (38Ft) = 9,3 FIPS		

$$\frac{Project No. 18111.00}{C_{1}} Date: \frac{10.07/18}{10.07/18}$$

$$\frac{Project No. 18111.00}{Design NS} Date: \frac{10.07/18}{10.07/18}$$

$$\frac{Project No. 18111.00}{Design NS} Date: \frac{10.07/18}{10.07/18}$$

$$\frac{Project No. 18111.00}{Design NS} Design NS$$

$$\frac{Project No. 1811.00}{Design NS} Design NS$$

$$\frac{Project No. 1811.00}{Dos N Project NS PS} Design NS$$

$$\frac{Project No. 1811.00}{Dos N Project NS PS} Design NS$$

$$\frac{Project No. 1811.00}{Dos N Project NS PS} Design NS$$

$$\frac{Project NS PS}{PS} Design NS$$

$$\frac{Project NS$$

DIDLIELTOR

TOS PLF L 770 PLF (1/2" PLIWOOD WI IDD RY ON PARISON TO SCHOOL BUILDING.

Section: _____

Page:

GRAVITY LOADING DEAD: GFT)(12PSF) = 24 PLF (PROJECTED) SNOW: (2FT) (2SPSF) = 50 PLF (PROJECTED) SEISMIC LOADING (GBKIPS)/80 FT = 788 PLF (788 PLF) (2FT) = 1576 # TO EACH ARCH

CONNECTION CHECK

BOLT TO FOOTING:

SEETHILTI CALCULATION.

Profis Anchor 2.7.7

1

10/9/2018

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Specifier's comments:

T

1 Input data

1 Input data		
Anchor type and diameter:	KWIK HUS-EZ (KH-EZ) 1/2 (2 1/4)	
Effective embedment depth:	$h_{ef,act}$ = 1.520 in., h_{nom} = 2.250 in.	
Material:	Carbon Steel	
Evaluation Service Report:	ESR-3027	
Issued I Valid:	2/1/2016 12/1/2017	
Proof:	Design method ACI 318-14 / Mech.	
Stand-off installation:	$e_b = 0.000$ in. (no stand-off); t = 0.375 in.	
Anchor plate:	$I_x \ge I_y \ge t = 9.500$ in. ≥ 6.000 in. ≥ 0.375 in.; (Rec	ommended plate thickness: not calculated
Profile:	no profile	
Base material:	cracked concrete, 2500, f_c ' = 2,500 psi; h = 12.0	000 in.
Installation:	hammer drilled hole, Installation condition:	Dry
Reinforcement:	tension: condition B, shear: condition B; no supp	plemental splitting reinforcement present
	odao roinforcomont: nono or < No. 4 hor	

Geometry [in.] & Loading [lb, in.lb]

edge reinforcement: none or < No. 4 bar

Page:

Date:

Project:

Sub-Project I Pos. No.:

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Page: Project: Sub-Project I Pos. No.: Date:

10/9/2018

2

2 Load case/Resulting anchor forces

Ι

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	190	714	0	714
2	190	714	0	714

 $\begin{array}{lll} \mbox{max. concrete compressive strain:} & & - \mbox{[\%]} \\ \mbox{max. concrete compressive stress:} & & - \mbox{[psi]} \\ \mbox{resulting tension force in } (x/y) = (0.000/0.000): & 381 \mbox{ [lb]} \\ \mbox{resulting compression force in } (x/y) = (0.000/0.000): & 0 \mbox{ [lb]} \end{array}$

3 Tension load

	Load N _{ua} [lb]	Capacity 🖕 N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	190	11,778	2	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	381	2,071	19	OK

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

N _{sa} :	= ESR value	refer to ICC-ES ESR-3027
ϕN_{sa}	N _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²]	f _{uta} [psi]	
0.16	112,540	-
Calculations		
N _{sa} [lb]		
18,120		

Results

N _{sa} [lb]	∮ steel	φ N _{sa} [lb]	N _{ua} [lb]
18,120	0.650	11,778	190

www.hilti.us

Company:	
Specifier:	
Address:	
Phone I Fax:	
E-Mail:	

Page:	3
Project:	
Sub-Project I Pos. No.:	
Date:	10/9/2018

3.2 Concrete Breakout Strength

Ι

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b}$	ACI 318-14 Eq. (17.4.2.1b)
$\phi N_{cbg} N_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{\text{ef}}}}\right) 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\Psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\min}}{1.5h_{ef}} \right) 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\Psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) 1.0$	ACI 318-14 Eq. (17.4.2.7b)
$N_{b} = K_{c} \lambda_{a} \overline{f_{c}} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N		
1.520	0.000	0.000	4.000	1.000	-	
c _{ac} [in.]	k _c	λa	f _c [psi]			
2.750	17	1.000	2,500			
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
41.59	20.79	1.000	1.000	1.000	1.000	1,593

Results			
N _{cbg} [lb]	¢ concrete	φ N _{cbg} [lb]	N _{ua} [lb]
3,186	0.650	2,071	381

www.hilti.us		Profis Ancho	r 2.7
Company:	Page:	4	
Specifier:	Project:		
Address:	Sub-Project I Pos. No.:		
Phone I Fax:	Date:	10/9/2018	
E-Mail:			

4 Shear load

	Load V _{ua} [lb]	Capacity φ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	714	5,547	13	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	1,428	2,230	65	OK
Concrete edge failure in direction y+**	1,428	2,524	57	OK

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-3027
φ V _{stee}	el V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.16	112,540

Calculations

V_{sa} [lb] 9,245

Results

V _{sa} [lb]	∲ steel	ϕV_{sa} [lb]	V _{ua} [lb]
9,245	0.600	5,547	714

4.2 Pryout Strength

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} \right]$	N _b ACI 318-14 Eq. (17.5.3.1b)
φ V _{cpg} V _{ua}	ACI 318-14 Table 17.3.1.1
A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig	g. R 17.4.2.1(b)
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{\text{ef}}}}\right) 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5h_{\text{ef}}} \right) 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) 1.0$	ACI 318-14 Eq. (17.4.2.7b)
$N_{b} = k_{c} \lambda_{a} \overline{f_{c}} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
1	1.520	0.000	0.000	4.000
Ψ с,N	c _{ac} [in.]	k _c	λa	f _c [psi]
1.000	2.750	17	1.000	2,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
41.59	20.79	1.000	1.000	1.000	1.000	1,593
Results						
V _{cpg} [lb]	∲ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
3,186	0.700	2,230	1,428			

C62

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us

Company:	
Specifier:	
Address:	
Phone I Fax:	
E-Mail:	

Page:	5
Project:	
Sub-Project I Pos. No.:	
Date:	10/9/2018

4.3 Concrete edge failure in direction y+

T

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-14 Eq. (17.5.2.1b)
φ V _{cbg} V _{ua}	ACI 318-14 Table 17.3.1.1
A _{Vc} see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-14 Eq. (17.5.2.1c)
$\Psi_{\text{ec,V}} = \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) 1.0$	ACI 318-14 Eq. (17.5.2.6b)
$ \psi_{h,V} = \frac{1.5c_{a1}}{h_a} 1.0 $	ACI 318-14 Eq. (17.5.2.8)
$V_{b} = \left(7 \left(\frac{I_{e}}{d_{a}}\right)^{0.2} \ \overline{d_{a}}\right) \lambda_{a} \overline{f_{c}} c_{a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψ c,V	h _a [in.]	
4.000	-	0.000	1.000	12.000	
l _e [in.]	λa	d _a [in.]	f _c [psi]	Ψ parallel,V	
1.520	1.000	0.500	2,500	1.000	
Calculations					
$A_{\rm Ve}$ [in ²]	$A_{\rm Max}$ [in. ²]	W an V	اللهم الأ	W by	V⊾ [lb]

	VCOLJ	7 60, V	+ eu,v	Ψ 11, V	DL
105.00	72.00	1.000	1.000	1.000	2,473
Results					
V _{cbg} [lb]	φ concrete	ϕV_{cbg} [lb]	V _{ua} [lb]		
3.606	0.700	2.524	1.428		

5 Combined tension and shear loads

β_N	βv	ζ	Utilization β _{N,V} [%]	Status
0.184	0.640	5/3	54	OK

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This
 means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be
 sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate
 thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption
 is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for
 plausibility!
- Condition A applies when supplementary reinforcement is used. The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-14, Section 17.8.1.

Fastening meets the design criteria!

C63

www.hilti.us

Company:Page:6Specifier:Project:Address:Sub-Project I Pos. No.:Phone I Fax:Date:10/9/2018

7 Installation data

 Anchor plate, steel: Anchor type and diameter: KWIK HUS-EZ (KH-EZ) 1/2 (2 1/4)

 Profile: no profile
 Installation torque: 540.001 in.lb

 Hole diameter in the fixture: df = 0.625 in.
 Hole diameter in the base material: 0.500 in.

 Plate thickness (input): 0.375 in.
 Hole depth in the base material: 2.625 in.

 Recommended plate thickness: not calculated
 Minimum thickness of the base material: 4.500 in.

 Drilling method: Hammer drilled
 Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

7.1 Recommended accessories

Coordinates Anchor in.

Anchor	x	У	C.,x	C+x	c _y	c _{+y}	
1	-2.750	0.000	-	-	4.000	4.000	-
2	2.750	0.000	-	-	4.000	4.000	~

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us		Profis Anchor 2		
Company:	Page:	7		
Specifier:	Project:			
Address:	Sub-Project I Pos. No.:			
Phone I Fax:	Date:	10/9/2018		
E-Mail:				

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

Appendix D

CONCEPTUAL ESTIMATE OF PROBABLE CONSTRUCTION COSTS

I. ELEMENTARY SCHOOL STRUCTURE

CONCEPTUAL STRENGTHENING AND REMEDIATION

D1

	SUMMARY			
	Location	GFA SF	Cost/SF	Total Cost
	A STRUCTURAL STRENGTHENING	5,478	\$ 5.47	\$ 29,939.81
	B BUILDING CONDITION REMEDIATION	5,478	\$ 46.74	\$ 256,054.80
· . · · · · ·	СМЕР	5,478	\$ 71.19	\$ 390,000.00
1	D DEMOLITION	5,478	\$ 10.75	\$ 58,889.16
***********	ESTIMA TED NET C	<i>0ST</i> 5478	\$134.15	\$ 734,883.77

MARGINS & ADJUSTMENTS

Phasing & Temporary Work	2%	\$ 14,697.68
General Conditions	10%	\$ 74,958.14
Bonds & Insurance	3%	\$ 24,736.19
Overhead & Profit	5%	\$ 42,463.79
Design Contingency	20%	\$ 178,347.91
Construction Contingency	20%	\$ 214,017.50
Escalation to 3Q2019	3%	\$ 38,523.15

ESTIMA TED NET COST

5478 \$241.44 \$1,322,628.13

. ee taan		GFA		5478	SF			
· · · · · · · · · · · · · · · · · · ·	A STRUCTURAL STRENGTHENING							
	Description	Unit	Qty		F	Rate		Total
	05 Metals							
	HSS Strongbacks	······Ea····	. 11		\$3	93.25	· . \$.	4,325.75
	Hold Downs	Ea	24		• • \$ 1	25.16	• • • \$ • •	3,003.84
**************************************			···\$···	1.34	/S		··\$	7,329.59
	06 Wood, Plastics, and Composites							
	Plywood Roof Sheathing 1/2"	SF	6420)	\$	1.74	\$	11,170.80
	New Roof Framing	LF	277		\$	5.21	\$	1,443.17
	New Wall Studs	LF	1375	5	\$	2.15	\$	2,956.25
	Plywood Wall Sheathing 1/2"	SF	3200)	\$	2.20	\$	7,040.00
			\$	4.13	/SF		\$	22,610.22
		ΤΟΤΑΙ	\$	5.47	/SF	:	\$	29,939.81

· . · · · · · · · · · · · · · · · · · ·								
		GFA:		5478	SF			
	Description	Unit	Qty		Rate		Total	
	03 Concrete	.					0.046.50	
e de la construction Notes estatutions	Concrete	Сү	25	1 61	\$353.86	••• ••••	8,846.50	
19			₽	1.01	/ 3г	₽ 	0,040.30	
	05 Metals							
	5/8" Epoxy Anchor Bolts	Ea	215		\$ 10.20	\$	2,193.00	
			\$	0.40	/SF	\$	2,193.00	
	06 Wood, Plastics, and Composites							
	FRP Reinforcing	SF	100		\$ 93.50	\$	9,350.00	
			\$	1.71	/SF	\$	9,350.00	
	07 Thormal and Masitura Protostion							
	New Roof	SE	6420)	\$ 12.00	\$	77.040.00	
	New Siding	SF	5830	5	\$ 4.91	\$	28,625.30	
			\$	19.29	/SF	\$:	105,665.30	
	08 Openings	-				L	100.000.00	
	Allowance for New Windows	Item	_	10.25	/65	\$	100,000.00	
			ş	18.25	/ 5F	≯.	100,000.00	
	09 Finishings							
	Allowance for Repair of Finishes	Item			_	\$	30,000.00	
			\$	5.48	/SF	\$	30,000.00	
		TOTAL	\$	46.74	/SF	\$ 2	256.054.80	
			• •		,	Ŧ ·		
//		04						

		GFA:		5478	SF		
	C MEP						
	Description	Unit	Qty		Rate		Tota
. · · · · · · · · · · · · · · · · · · ·	22 Plumbing						
1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 -	Allowance for Plumbing Demo	Item				\$.	15,000.00
	Allowance for Plumbing Repair	Item				\$	75,000.00
			\$	16.43	/SF	\$	90,000.00
	23 Heating, Ventilation and Air Conditioning						
	Allowance for HVAC Demo	Item				\$	30,000.00
	Allowance for HVAC Repair	Item				\$	150,0 <mark>00.00</mark>
			\$	32.86	/SF	\$	180,000.00
	26 Electrical						
	Allowance for Electrical Demo	Item				\$	20,000.00
	Allowance for Electrical Repair	Item				\$	100,000.00
			\$	21.91	/SF	\$	120,000.00
		TOTAL	\$	71.19	/SF	\$	390,000.00

		GFA	: 54	178 SF	
D	DEMOLITION				
De	scription	Unit	Qty	Rate	Total
02	Existing Conditions				
	Allowance for Misc. Demo		5478	\$2.20\$	12,051.60
•••••••••••••••••••••••••••••••••••••••	Demo Roof	SF	6420	\$ 5.17 \$	33,191.40
	Demo Masonry Wall	SF		\$1.02\$	545.70
	Demo Wood Stud Wall	SF	1620	\$ 1.06 \$	1,717.20
	Demo Siding	SF	5830	\$ 1.49 \$	8,686.70
	Demo Shiplap	SF	3200	\$ 0.68 \$	2,176.00
	Demo Masonry Chimney	CF	54	\$ 9.64 \$	520.56
			\$ 10.7	75 / SF \$	58,889.16

TOTAL \$ 10.75 /SF

\$ 58,889.16

II. QUONSET HUT

CONCEPTUAL STRENGTHENING AND REMEDIATION

*******	SUMMARY				 	
	Location	GFA SF	Co	ost/SF	Total Cost	
	A STRUCTURAL STRENGTHENING	4,160	\$	3.44	\$ 14,319.48	
	B BUILDING CONDITION REMEDIATION				\$ 21,148.40	
	C MEP				\$ 95,000.00	
	D DEMOLITION				\$ 14,036.24	

MARGINS & ADJUSTMENTS

Phasing & Temporary Work	2%	\$ 2,890.08
General Conditions	10%	\$ 14,739.42
Bonds & Insurance	3%	\$ 4,864.01
Overhead & Profit	5%	\$ 8,349.88
Design Contingency	20%	\$ 35, <mark>069.50</mark>
Construction Contingency	20%	\$ 42,083.40
Escalation to 3Q2019	3%	\$ 7,575.01

ESTIMA TED NET COST 4160 \$ 62.52 \$ 260,075.43

Description 05 Metals 5/8" Epoxy Anchor Bolts 06 Wood, Plastics, and Composites Plywood Roof/Floor Sheathing Plywood Wall Sheathing Misc. Framing	Unit Ea SF SF SF SF	Qty 40 \$ 1164 3900 5064 \$ \$	0.10 3.34 3.44	Rate \$ 10.20 /SF \$ 1.74 \$ 1.97 \$ 0.83 /SF /SF	\$ \$ \$ \$ \$ \$ \$	Total 408.00 408.00 2,025.36 7,683.00 4,203.12 13,911.48 14,319.48
05 Metals 5/8" Epoxy Anchor Bolts 06 Wood, Plastics, and Composites Plywood Roof/Floor Sheathing Plywood Wall Sheathing Misc. Framing	Ea SF SF SF	40 \$ 1164 3900 5064 \$ \$	0.10 3.34 3.44	\$ 10.20 /SF \$ 1.74 \$ 1.97 \$ 0.83 /SF /SF	\$ \$ \$ \$ \$ \$	408.00 408.00 2,025.36 7,683.00 4,203.12 13,911.48 14,319.48
5/8" Epoxy Anchor Bolts 06 Wood, Plastics, and Composites Plywood Roof/Floor Sheathing Plywood Wall Sheathing Misc. Framing	Ea SF SF SF	40 \$ 1164 3900 5064 \$ \$	0.10 3.34 3.44	\$ 10.20 /SF \$ 1.74 \$ 1.97 \$ 0.83 /SF /SF	\$ \$ \$ \$ \$ \$ \$	408.00 408.00 2,025.36 7,683.00 4,203.12 13,911.48 14,319.48
O6 Wood, Plastics, and Composites Plywood Roof/Floor Sheathing Plywood Wall Sheathing Misc. Framing	SF SF SF	\$ 1164 3900 5064 \$	3.34 3.44	\$ 1.74 \$ 1.97 \$ 0.83 /SF /SF	\$ \$ \$ \$	2,025.36 7,683.00 4,203.12 13,911.48 14,319.48
06 Wood, Plastics, and Composites Plywood Roof/Floor Sheathing Plywood Wall Sheathing Misc. Framing	SF SF TOTAL	1164 3900 5064 \$	3.34 3.44	\$ 1.74 \$ 1.97 \$ 0.83 /SF /SF	\$ \$ \$	2,025.36 7,683.00 4,203.12 13,911.48 14,319.48
Plywood Wall Sheathing Plywood Wall Sheathing Misc. Framing	SF SF TOTAL	1164 3900 5064 \$	3.34	\$ 1.74 \$ 1.97 \$ 0.83 /SF /SF	\$ \$ \$	2,025.36 7,683.00 4,203.12 13,911.48 14,319.48
Plywood Wall Sheathing Misc. Framing	SF SF	3900 <u>5064</u> \$	3.34 3.44	\$ 1.97 \$ 0.83 /SF /SF	\$ \$ \$	7,683.00 4,203.12 13,911.48 14,319.48
Misc. Framing	ъг	<u>5004</u> \$	3.34 3.44	\$ 0.83 /SF /SF	⇒ \$ \$	4,203.12 13,911.48 14,319.48
	TOTAL	, \$	3.44	/SF	\$	14,319.48
	TOTAL	\$	3.44	/SF	\$	14,319.48
	TOTAL	\$	3.44	/SF	\$	14,319.48

		GFA		4160	SF			
B E	BUILDING CONDITION REMEDIATION scription	Unit	Qty		R	ate		Tota
05	Metals							
	Misc. Allowance for Connections	Item					\$	8,000.00
	5/8" Epoxy Anchor Bolts	Ea	240		\$	10.20	\$	2,448.00
			\$	0.59	/SF		\$	2,448.00
06	Wood, Plastics, and Composites							
	Wall Framing	SF	336		\$	2.50	\$	840.00
			\$	0.20	/SF		\$	840.00
07	Thermal and Mositure Protection							
	New Roof	SF	960		\$	5.00	\$	4,800.00
	New Siding	SF	2500		\$	4.91	\$	12,275.00
	New Gutters/Downspouts	LF	84	4 20	\$ /CE	9.35	\$	/85.40
			⊅	4.29	/ 56		Þ	17,800.40
		ΤΟΤΑΙ	\$	5.08	/SF	:	\$	21,148.40

D10

C MEP		GFA		4160	SF		
Descripti	ion	Unit	Qty		Rate		Total
22 Plum	nbing						
·····	Allowance for Plumbing Demo	Item	\$	1.20	/SF	\$ \$	5,000.00 5,000.00
23 Heat	ting, Ventilation and Air Conditioning						
	Allowance for HVAC Demo	Item				\$	10,000.00
	Allowance for HVAC Repair	Item	¢	10.82	/ SF	\$ ¢	35,000.00
			Ŧ	10.02	/ 31	æ	45,000.00
26 Elect	trical	_					
	Allowance for Electrical Demo	Item Item				\$ ¢	10,000.00 35,000,00
		TIGHT	\$	10.82	/SF	⊅ \$	45,000.00
					167		
		ΤΟΤΑΙ	. \$	22.84	/SF	\$	95,000.00

 ·····	GFA		4160	SF			
D DEMOLITION Description	Unit	Otv		Rate		Total	
02 Existing Conditions	-	~ /					
Allowance for Misc. Demo	SF	4160)	\$ 2.20) \$	9,152.00	
 Demo Roof	SF	960		\$ 1.24	1 \$	1,190.40	
 Demo Gutters/Downspouts	LF SF	84 1600)	\$ 2.18	3 \$ }···\$	183.12 3.168.00	
Demo Masonry Piers	SF	336		\$ 1.02	2 \$	342.72	
		\$	3.37	/SF	\$	14,036.24	
	ΤΟΤΑΙ	LS	3.37	/SF	\$	14,036.24	
		- 1			-	_ ,	

III. DEMOLITION

	SUMMARY						
••••••	Location		GFA SF	Ċ	ost/SF		Total Cost
	A ELEMENTARY SCHOOL STRUCTURE	DEMO	5,478	\$	21.88	\$	119,838.96
	B QUONSET HUT STRUCTURE DEMO		4160	\$	12.65	\$	52,626.10
		ESTIMA TED NET COST	9,638	\$	17.89	\$	172,465.06
	MARGINS & ADJUSTMENTS	204					2 440 20
	General Conditions	2% 10%				⊅ ¢	17 501 44
	Bonds & Insurance	3%				Ք \$	5.805.17
	Overhead & Profit	5%				\$	9,965.55
	Design Contingency	20%				\$	41,855.30
	Construction Contingency	20%				\$	50,226.36
	Escalation to 302019	3%				\$	9 040 75

ESTIMA TED NET COST 9,638 \$ 32.21 \$ 310,398.93

	GFA	: 5478	SF		
A ELEMENTARY SCHOOL STRUCTURE DEMO Description	Unit	Qty	Rate	Total	
02 Existing Conditions					
 Building Demo	CF	72595	\$ 0.41	\$ 29,763.95	
Slab Demo	SF	5478	\$ 0.92	\$ 5,039.76	
 Foundation Demo	UT Item	/ 5	\$ 550.47	\$ 39,783.25 ************************************	
Sewer/Water Utility Removal Allowance	Item			\$ 12,000.00	
MEP Removal Allowance	Item			\$ 15,000.00	
Site Work	SY	1100	\$ 7.50	\$ 8,250.00	
		\$ 21.88	/SF	\$ 119,838.96	
	TOTAL	\$ 21.88	/SF	\$ 119,838.96	
					1
					1

		Unit	Otv	Ra	ate		Total	
02 Evicti	ng Conditions	Orne	29				<u> </u>	
UZ EXISTI	Buildina Demo	CF	61790	\$	0.41	\$	25,333.90	
	Slab Demo	SF	4160		0.92	\$	3,827.20	
	Electric Utility Removal Allowance	Item		т т		\$	5,000.00	
	Sewer/Water Utility Removal Allowance	Item				••\$••	5,000.00	
	MEP Removal Allowance					\$	10,000.00	
	Site Work	SY	462	\$	7.50	\$	3,465.00	
			\$ 12.65	/SF		\$	52,626.10	
		TOTAL	\$ 12.65	/SF		\$	52,626.10	

Appendix E

ASCE 41-17 STRUCTURAL CHECKLISTS

wr	Kengineers

 SUBJECT:
 ASCE 41-17 CP Basic Configuration Checklist

 PROJECT:
 City of Manzanita - Elementary School Structure

Date: 9/28/18

Section:

Page: _____

Project No. <u>18111.00</u>

Design: KS

Checked: _____

Table 17-2. Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low Seismic	ity		
Building Sys	tem—General		
C(NC)N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
CNC N/A U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in bigh seismicity.	5.4.1.2	A.2.1.2
	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure.	5.4.1.3	A.2.1.3
Building Sys	tem—Building Configuration		
	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above.	5.4.2.1	A.2.2.2
C NC (WA) U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above.	5.4.2.2	A.2.2.3
CNC N/A U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force- resisting system are continuous to the foundation.	5.4.2.3	A.2.2.4
	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines.	5.4.2.4	A.2.2.5
	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered.	5.4.2.5	A.2.2.6
CNC N/A U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension.	5.4.2.6	A.2.2.7
Moderate Seis	micity (Complete the Following Items in Addition to the Items for Low Seismi	city)	
C NC N/AU	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at dotths within 50 ft (15.2 m) under the building	5.4.3.1	A.6.1.1
CNC N/A U	SLOPE FAILURE: The building site is located away from potential earthquake- induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure	5.4.3.1	A.6.1.2
C NC N/AU	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated.	5.4.3.1	A.6.1.3
High Seismicit	y (Complete the Following Items in Addition to the Items for Moderate Seismi	city)	
	OVERTURNING: The ratio of the least horizontal dimension of the seismin force	5133	A621
	resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$.	J. 4 .J.J	Α.υ.Ζ.Ι
C NC (N/A) U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C.	5.4.3.4	A.6.2.2

	-
W	Kengineers

Date: 9/28/18

Section: _____

Page: _____

Table 17-6. Collapse Prevention Structural Checklist for Building Type W2

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low and Mod	lerate Seismicity		
Seismic-Forc	e-Resisting System		
	REDUNDANCY: The number of lines of shear walls in each principal direction	5.5.1.1	A.3.2.1.1
	is greater than or equal to 2.		
C(NC)N/A U	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following	5.5.3.1.1	A.3.2.7.1
	values:		
	Structural panel sheathing 1,000 lb/ft		
	Diagonal sheathing 700 lb/ft		
	Straight sheathing 100 lb/ft		
	All other conditions 100 lb/ft		
	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system.	5.5.3.6.1	A.3.2.7.2
	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or	55361	A 3 2 7 3
	gypsum wallboard is not used for shear walls on buildings more than one story	0.0.01011	/
	high with the exception of the uppermost level of a multi-story building.		
CÍNC)N/A U	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect	5.5.3.6.1	A.3.2.7.4
	ratio greater than 2-to-1 are not used to resist seismic forces.		
CNC(N/A)U	WALLS CONNECTED THROUGH FLOORS: Shear walls have an	5.5.3.6.2	A.3.2.7.5
\bigcirc	interconnection between stories to transfer overturning and shear forces		
	through the floor.		
CNC(N/A)U	HILLSIDE SITE: For structures that are taller on at least one side by more than	5.5.3.6.3	A.3.2.7.6
\bigcirc	one-half story because of a sloping site, all shear walls on the downhill slope		
_	have an aspect ratio less than 1-to-1.		
CNC(N/A)U	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to	5.5.3.6.4	A.3.2.7.7
\bigcirc	the foundation with wood structural panels.		
C NC N/A U	OPENINGS: Walls with openings greater than 80% of the length are braced with	5.5.3.6.5	A.3.2.7.8
\bigcirc	wood structural panel shear walls with aspect ratios of not more than 1.5-to-1		
	or are supported by adjacent construction through positive ties capable of		
	transferring the seismic forces.		
Connections			
C(NC)N/A U	WOOD POSTS: There is a positive connection of wood posts to the foundation.	5.7.3.3	A.5.3.3
CNC N/A U	WOOD SILLS: All wood sills are bolted to the foundation.	5.7.3.3	A.5.3.4
(Č)NC N/A U	GIRDER–COLUMN CONNECTION: There is a positive connection using plates,	5.7.4.1	A.5.4.1
\bigcirc	connection hardware, or straps between the girder and the column support.		
High Seismic	ity (Complete the Following Items in Addition to the Items for Low and Model	rate Seismicit	y)
Connections			
(C)NC N/A U	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable	5.7.3.3	A.5.3.7
0	edge and end distance provided for wood and concrete.		
Diaphragms			
C NC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level	5.6.1.1	A.4.1.1
\sim	floors and do not have expansion joints.		
C NC N/A U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of	5.6.1.1	A.4.1.3
	changes in roof elevation.		
	DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around	5.6.1.5	A.4.1.8
-	all diaphragm openings larger than 50% of the building width in either major		
	plan dimension.		
C (NC)N/A U	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios	5.6.2	A.4.2.1
	less than 2-to-1 in the direction being considered.		
	SPAINS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of	5.6.2	A.4.2.2
	wood structural panels or diagonal sheathing.		

			Project No. <u>18111.00</u>	Date:	9/28/18
	SUBJECT:	ASCE 41-17 CP Building Type W2 Checklist	Design: KS	Section:	
Kengineers	PROJECT:	City of Manzanita - Elementary School Structure	Checked:	Page:	

Table 17-6	(Continued)	. Collapse	Prevention	Structural	Checklist	for	Buildina	Type	W2
	(Continuou)	. oonapoe	1101011011	ouaotaitai	Onconnot		Dunung	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
C NC (NA) U	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1	5.6.2	A.4.2.3
CNC N/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1

		Project No. <u>18111.00</u>	Date: 9/28/18
	SUBJECT: ASCE 41-17 CP Basic Configuration Checklist	_ Design: KS	Section:
WI K engineers	PROJECT: City of Manzanita - Quonset Hut	Checked:	Page:

Table 17-2. Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low Seismic	 ity		
Bu <u>il</u> ding Sys	stem—General		
CNCN/AU	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation	5.4.1.1	A.2.1.1
CNC N/A U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity.	5.4.1.2	A.2.1.2
CNCN/A U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure.	5.4.1.3	A.2.1.3
Building Sys	tem—Building Configuration		
	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above	5.4.2.1	A.2.2.2
C NC (VA) U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above.	5.4.2.2	A.2.2.3
	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force- resisting system are continuous to the foundation.	5.4.2.3	A.2.2.4
C NC (N/A) U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines.	5.4.2.4	A.2.2.5
	MASS: There is no change in effective mass of more than 50% from one story to the next Light roofs, penthouses, and mezzanines need not be considered	5.4.2.5	A.2.2.6
CNC N/A U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension.	5.4.2.6	A.2.2.7
Moderate Seis	micity (Complete the Following Items in Addition to the Items for Low Seismi	city)	
C NC N/AU	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the	5.4.3.1	A.6.1.1
CNC N/A U	SLOPE FAILURE: The building site is located away from potential earthquake- induced slope failures or rockfalls so that it is unaffected by such failures or is canable of accommodating any predicted movements without failure	5.4.3.1	A.6.1.2
C NC N/AU	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated.	5.4.3.1	A.6.1.3
High Seismicit	ty (Complete the Following Items in Addition to the Items for Moderate Seismi	city)	
	OVERTIBNING: The ratio of the least horizontal dimension of the seismic-force-	5433	4621
	resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$.	0.7.0.0	7.0.2.1
C NC (N/A) U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C.	5.4.3.4	A.6.2.2

	-
W	Kengineers

 SUBJECT:
 ASCE 41-17 CP Building Type W2 Checklist
 Project No. 18111.00

 PROJECT:
 City of Manzanita - Quonset Hut
 Design: KS

Date: 9/28/18

Section:

Page: _____

Table 17-6. Collapse Prevention Structural Checklist for Building Type W2

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low and Mod	erate Seismicity		
Seismic-Force	e-Resisting System		
(C)NC N/A U	REDUNDANCY: The number of lines of shear walls in each principal direction	5.5.1.1	A.3.2.1.1
	is greater than or equal to 2.		
C(NC)N/A U	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following	5.5.3.1.1	A.3.2.7.1
	Values: Structural papel sheathing 1 000 lb/ft		
	Diagonal sheathing 700 lb/ft		
	Straight sheathing 100 lb/ft		
~	All other conditions 100 lb/ft		
C NC (N/A) U	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not	5.5.3.6.1	A.3.2.7.2
$\tilde{\mathbf{O}}$	rely on exterior stucco walls as the primary seismic-force-resisting system.		
C NC (N/A) U	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or	5.5.3.6.1	A.3.2.7.3
	gypsum wallboard is not used for shear walls on buildings more than one story		
	high with the exception of the uppermost level of a multi-story building.	0 0 1	
C NC N/A U	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect	5.5.3.6.1	A.3.2.7.4
	WALLS CONNECTED THEOLIGH ELOOPS: Shear walls have an	55362	A 3 2 7 5
	interconnection between stories to transfer overturning and shear forces	5.5.5.0.2	A.3.2.7.3
	through the floor		
	HILLSIDE SITE: For structures that are taller on at least one side by more than	5.5.3.6.3	A.3.2.7.6
	one-half story because of a sloping site, all shear walls on the downhill slope		
_	have an aspect ratio less than 1-to-1.		
C NC (V/A) U	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to	5.5.3.6.4	A.3.2.7.7
\sim	the foundation with wood structural panels.		
CNC N/A U	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1	5.5.3.6.5	A.3.2.7.8
	or are supported by adjacent construction through positive ties capable of transferring the seismic forces.		
Connections			
	WOOD POSTS: There is a positive connection of wood posts to the foundation.	5.7.3.3	A.5.3.3
(C)NC N/A U	WOOD SILLS: All wood sills are bolted to the foundation.	5.7.3.3	A.5.3.4
	GIRDER–COLUMN CONNECTION: There is a positive connection using plates,	5.7.4.1	A.5.4.1
	connection hardware, or straps between the girder and the column support.		
High Seismic	ity (Complete the Following items in Addition to the items for Low and Mode	rate Seismicit	y)
	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable	5733	A 5 3 7
	edge and end distance provided for wood and concrete	5.7.5.5	A.J.J.1
Diaphragms	cage and that distance provided for wood and concrete.		
C NC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level	5.6.1.1	A.4.1.1
	floors and do not have expansion joints.		
CNC N/A U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation	5.6.1.1	A.4.1.3
C NC (N/A) U	DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around	5.6.1.5	A.4.1.8
	all diaphragm openings larger than 50% of the building width in either major		
	pian dimension.		A 4 0 1
	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios	5.6.2	A.4.2.1
	SPANS: All wood diantragms with spars greater than 24 ft (7.3 m) consist of	562	Δ <i>1</i>
	wood structural panels or diagonal sheathing.	0.0.2	7.4.2.2

|--|

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
CNCN/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1